DOI QR코드

DOI QR Code

Simulation of superelastic SMA helical springs

  • Received : 2014.07.12
  • Accepted : 2014.12.27
  • Published : 2015.07.25

Abstract

Shape memory alloy (SMA) helical springs have found a large number of different applications in industries including biomedical devices and actuators. According to the application of SMA springs in different actuators, they are usually under tension and torsion loadings. The ability of SMAs in recovering inelastic strains is due to martensitic phase transformation between austenite and martensite phases. Stress or temperature induced martensite transformation induced of SMAs is a remarkable property which makes SMA springs more superior in comparison with traditional springs. The present paper deals with the simulation of SMA helical spring at room temperature. Three-dimensional phenomenological constitutive model is used to describe superelastic behavior of helical spring. This constitutive model is implemented as a user subroutine through ABAQUS STANDARD (UMAT), and the process of the implementation is presented. Numerical results show that the developed constitutive model provides an appropriate approach to captures the general behavior of SMA helical springs.

Keywords

References

  1. Aguiar, R.A., Savi, M.A. and Pacheco, Pedro M.C.L. (2010), "Experimental and numerical investigations of shape memory alloy helical springs", Smart Mater. Struct., 19(2), 025008. https://doi.org/10.1088/0964-1726/19/2/025008
  2. Arghavani, J., Auricchio, F., Naghdabadi, R. and Reali, A. (2011), "An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys", Finite Elem. Anal. Des., 47(2), 166-174. https://doi.org/10.1016/j.finel.2010.09.001
  3. Attanasi, G., Auricchio, F. and Urbano, M. (2011), "Theoretical and experimental investigation on SMA superelastic springs", J. Mater. Eng. Perform., 20(4-5), 706-711. https://doi.org/10.1007/s11665-011-9831-5
  4. Auricchio, F., Boatti, E., et al. (2015), Chapter 11 - SMA Biomedical Applications. Shape Memory Alloy Engineering. L. L. Concilio. Boston, Butterworth-Heinemann: 307-341.
  5. Bazant, P. and Oh, B. (1986), "Efficient numerical integration on the surface of a sphere", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik 66(1): 37-49. https://doi.org/10.1002/zamm.19860660108
  6. Brocca, M., Brinson, L.C. and Bazant, Z.P. (2002), "Three-dimensional constitutive model for shape memory alloys based on microplane model", J. Mech. Phys. Solids, 50(5), 1051-1077. https://doi.org/10.1016/S0022-5096(01)00112-0
  7. Buehler, W.J., Gilfrich, J.V. and Wiley, R.C. (1963), "Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi", J. Appl. Phys., 34(5), 1475-1477. https://doi.org/10.1063/1.1729603
  8. de Aguiar, R.A.A., de Castro Leao Neto, W.C., Savi, M.A. and Calas Lopes Pacheco, P.M. (2013), "Shape memory alloy helical springs performance: modeling and experimental analysis", Materials Science Forum, 758, 147-156. https://doi.org/10.4028/www.scientific.net/MSF.758.147
  9. Dong, Y., Boming, Z. and Jun, L. (2008), "A changeable aerofoil actuated by shape memory alloy springs", Mater. Sci. Eng., 485(1), 243-250. https://doi.org/10.1016/j.msea.2007.08.061
  10. Dumont, G. and Kuhl, C. (2005), "Finite element simulation for design optimisation of shape memory alloy spring actuators", Eng. Comput., 22(7), 835-848. https://doi.org/10.1108/02644400510619549
  11. Graesser, E. and Cozzarelli, F. (1994), "A proposed three-dimensional constitutive model for shape memory alloys", J. Intel. Mat. Syst. Str., 5(1), 78-89. https://doi.org/10.1177/1045389X9400500109
  12. Karamooz Ravari, M.R. and Kadkhodaei, M. (2014), "A computationally efficient modeling approach for predicting mechanical behavior of cellular lattice structures", J. Mater. Eng. Perform., 1-8.
  13. Karamooz Ravari, M.R., Kadkhodaei, M., Badrossamay, M. and Rezaei, R. (2014), "Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling", Int. J. Mech. Sci., 88, 154-161. https://doi.org/10.1016/j.ijmecsci.2014.08.009
  14. Kauffman, G. and Mayo, I. (1997), "The story of nitinol: the serendipitous discovery of the memory metal and its applications", The Chemical Educator, 2(2), 1-21.
  15. Leukart, M. and Ramm, E. (2003), "A comparison of damage models formulated on different material scales", Comput. Mater. Sci., 28(3), 749-762. https://doi.org/10.1016/j.commatsci.2003.08.029
  16. Liang, C. and Rogers, C. (1992), "A multi-dimensional constitutive model for shape memory alloys", J. Eng. Math., 26(3), 429-443. https://doi.org/10.1007/BF00042744
  17. Machado, L.G. and Savi, M.A. (2003), "Medical applications of shape memory alloys", Brazilian J. Medical Bio. Res., 36, 683-691. https://doi.org/10.1590/S0100-879X2003000600001
  18. Mehrabi, R., Andani, M.T., Elahinia, M. and Kadkhodaei, M. (2014a), "Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling", Mech. Mater., 77, 110-124. https://doi.org/10.1016/j.mechmat.2014.07.006
  19. Mehrabi, R. and Kadkhodaei, M. (2013), "3D phenomenological constitutive modeling of shape memory alloys based on microplane theory", Smart Mater. Struct., 22(2), 025017. https://doi.org/10.1088/0964-1726/22/2/025017
  20. Mehrabi, R., Kadkhodaei, M., Taheri Andani, M. and Elahinia, M. (2014b), "Microplane modeling of shape memory alloy tubes under tension, torsion, and proportional tension-torsion loading", J. Intel. Mat. Syst. Str., 1045389X14522532.
  21. Mehrabi, R., Kadkhodaei, M. and Elahinia, M. (2014c), "Constitutive modeling of tension-torsion coupling and tension-compression asymmetry in NiTi shape memory alloys", Smart Mater. Struct., 23(7), 75021-75035. https://doi.org/10.1088/0964-1726/23/7/075021
  22. Mehrabi, R., Kadkhodaei, M. and Elahinia, M. (2014d), "A thermodynamically-consistent microplane model for shape memory alloys", Int. J. Solids Struct., 51(14), 2666-2675. https://doi.org/10.1016/j.ijsolstr.2014.03.039
  23. Mehrabi, R., Taheri Andani, M. Kadkhodaei, M. and Elahinia, M. (2015), "Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings", Exp. Mech., 55, 1151-1164. https://doi.org/10.1007/s11340-015-0016-2
  24. Menna, C., Auricchio, F., et al. (2015), Chapter 13 - Applications of Shape Memory Alloys in Structural Engineering. Shape Memory Alloy Engineering. L. L. Concilio. Boston, Butterworth-Heinemann: 369-403.
  25. Mehrabi, R., Taheri Andani, M. Kadkhodaei, M., and Elahinia, M. (2015), "Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings", Exp. Mech., 55, 1151-1164. https://doi.org/10.1007/s11340-015-0016-2
  26. Mirzaeifar, R., DesRoches, R. and Yavari, A. (2011), "A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs", Int. J. Solids Struct., 48(3), 611-624. https://doi.org/10.1016/j.ijsolstr.2010.10.026
  27. Mohd Jani, J., Leary, M., Subic, A. and Gibson, M.A. (2014), "A review of shape memory alloy research, applications and opportunities", Mater. Design, 56, 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084
  28. Nicholson, D.E., Padula II, S.A. and Noebe, R.D., Benafan, O. and Vaidyanathan, R. (2014), "Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs", Smart Mater. Struct., 23(12), 125009. https://doi.org/10.1088/0964-1726/23/12/125009
  29. Panico, M. and Brinson, L. (2007), "A three-dimensional phenomenological model for martensite reorientation in shape memory alloys", J. Mech. Phys. Solids, 55(11), 2491-2511. https://doi.org/10.1016/j.jmps.2007.03.010
  30. Pecora, R. and Dimino, I. (2015), Chapter 10 - SMA for Aeronautics. Shape Memory Alloy Engineering. L. L. Concilio. Boston, Butterworth-Heinemann: 275-304.
  31. Popov, P. and Lagoudas, D.C. (2007), "A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite", Int. J. Plasticity, 23(10), 1679-1720. https://doi.org/10.1016/j.ijplas.2007.03.011
  32. Ravari, M.K., Kadkhodaei, M. and Ghaei, A. (2015), "A microplane constitutive model for shape memory alloys considering tension-compression asymmetry", Smart Mater. Struct., 24(7), 075016. https://doi.org/10.1088/0964-1726/24/7/075016
  33. Reese, S. and Christ, D. (2008), "Finite deformation pseudo-elasticity of shape memory alloys-Constitutive modelling and finite element implementation", Int. J. Plasticity, 24(3), 455-482. https://doi.org/10.1016/j.ijplas.2007.05.005
  34. Saleeb, A., Dhakal, B., Hosseini, M.S. and Padula II, S.A. (2013), "Large scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles", Smart Mater. Struct., 22(9), 094006. https://doi.org/10.1088/0964-1726/22/9/094006
  35. Savi, M.A., Pacheco, P.M.C., Garcia, M.S., Aguiar, R.A., de Souza, L.F.G. and da Hora, R.B. (2015), "Nonlinear geometric influence on the mechanical behavior of shape memory alloy helical springs", Smart Mater. Struct., 24(3), 035012." https://doi.org/10.1088/0964-1726/24/3/035012
  36. Zhou, L., Zheng, L.J., Zhang, H.R. and Zhang, H. (2012), "Effect of oxygen on microstructure of Ni-43Ti-7Al alloy", Mater. Res. Innov., 16(2), 115-120. https://doi.org/10.1179/1433075X11Y.0000000043

Cited by

  1. Modeling the Cyclic Shape Memory and Superelasticity of Selective Laser Melting Fabricated NiTi 2018, https://doi.org/10.1016/j.ijmecsci.2018.01.034
  2. Numerical implementation of the microplane constitutive model for shape memory alloys 2019, https://doi.org/10.1177/1464420717708486
  3. INVESTIGATION OF MECHANICAL BEHAVIOR OF NiTi STENT UNDER DIFFERENT LOADINGS vol.18, pp.06, 2018, https://doi.org/10.1142/S021951941850029X
  4. A numerical model based on Voronoi tessellation for the simulation of the mechanical response of porous shape memory alloys vol.53, pp.13, 2018, https://doi.org/10.1007/s11012-018-0883-6
  5. Numerical Simulation and Experimental Study of a Simplified Force-Displacement Relationship in Superelastic SMA Helical Springs vol.19, pp.1, 2019, https://doi.org/10.3390/s19010050
  6. Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires vol.23, pp.4, 2019, https://doi.org/10.12989/sss.2019.23.4.337
  7. A modified one-dimensional constitutive model of pseudoelastic SMAs and its application in simulating the force-deformation relationship of SMA helical springs vol.29, pp.11, 2015, https://doi.org/10.1088/1361-665x/abaac3
  8. Crawling-jumping synergic bioinspired robots harnessing electroactive bistable actuators by adjusting mechanical responses and forces vol.24, pp.None, 2021, https://doi.org/10.1016/j.apmt.2021.101091