DOI QR코드

DOI QR Code

A general method for active surface adjustment of cable net structures with smart actuators

  • Wang, Zuowei (School of Electromechanical Engineering, Xidian University) ;
  • Li, Tuanjie (School of Electromechanical Engineering, Xidian University)
  • Received : 2014.03.21
  • Accepted : 2014.07.07
  • Published : 2015.07.25

Abstract

Active surface adjustment of cable net structures is becoming significant when large-size cable net structures are widely applied in various fields, especially in satellite antennas. A general-duty adjustment method based on active cables is proposed to achieve active surface adjustment or surface profile reconfiguration of cable net structures. Piezoelectric actuators and voice coil actuators are selected for constructing active cable structures and their simplified mechanical models are proposed. A bilevel optimization model of active surface adjustment is proposed based on the nonlinear static model established by the direct stiffness method. A pattern search algorithm combined with the trust region method is developed to solve this optimization problem. Numerical examples of a parabolic cable net reflector are analyzed and different distribution types of active cables are compared.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Central Universities

References

  1. Breitkopf, P., Naceur, H., Rassineux, A .and Villon, P. (2005), "Moving least squares response surface approximation: formulation and metal forming applications", Comput. Struct., 83(17-18), 1411-1428. https://doi.org/10.1016/j.compstruc.2004.07.011
  2. Kaltenbacher, M., Kaltenbacher, B., Hegewald, T. and Lerch, R. (2010), "Finite element formulation for ferroelectric hysteresis of piezoelectric materials", J. Intel. Mat. Syst. Str., 21(8), 773-785. https://doi.org/10.1177/1045389X10366319
  3. Kettil, P. and Wiberg, N.E. (2004), "Simulation of failure of structures using dynamics and optimization techniques", Comput.Struct., 82(9-10), 815-828. https://doi.org/10.1016/j.compstruc.2003.10.023
  4. Li, T.J. and Wang, Y. (2009), "Performance relationships between ground model and space prototype of deployable space antennas", Acta Astronaut., 65(9-10), 1383-1392. https://doi.org/10.1016/j.actaastro.2009.03.037
  5. Meguro, A., Shintate, K., Usui, M. and Tsujihata, A. (2009), "In-orbit deployment characteristics of large deployable antenna reflector onboard engineering test satellite VIII", Acta Astronaut., 65(9-10), 1306-1316. https://doi.org/10.1016/j.actaastro.2009.03.052
  6. Natori, M.C., Takano, T., Inoue, T. and Noda, T. (1993), "Design and development of a deployable mesh antenna for MUSES-B Spacecraft", Proceedings of the 34th AIAA /ASME /ASCE /AHS /ASC Structures, Structural Dynamics and Materials Conference, La Jolla, California, AIAA 93-1460.
  7. Nocedal, J. and Wright, S.J. (2006), Numerical optimization, Springer, New York, USA.
  8. Preumont, A. (2002), Vibration control of active structures, Kluwer Academic Publishers, Dordrecht, Netherlands.
  9. Shi, H. and Yang, B. (2012), Nonlinear deployable mesh reflectors, (Eds., Dai, L.M. and Jazar, R.N.), Nonlinear approaches in engineering application, Springer, New York, USA.
  10. Shultz, G.A., Schnabel, R.B. and Byrd, R.H. (1985), "A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties", SIAM J. Numer. Anal., 22(1), 47-67. https://doi.org/10.1137/0722003
  11. Tabata, M. and Natori, M.C. (1996), "Active shape control of a deployable space antenna reflector", J. Intel. Mat. Syst. Str., 7(2), 235-240. https://doi.org/10.1177/1045389X9600700216
  12. Tabata, M., Yamamoto, K., Inoue, T., Noda, T. and Miura, K. (1992), "Shape adjustment of a flexible space antenna reflector",J. Intell.Mater. Syst. Struct., 3(4), 646-658. https://doi.org/10.1177/1045389X9200300407
  13. Tanaka, H. (2011), "Surface error estimation and correction of a space antenna based on antenna gain analyses", Acta Astronaut., 68(7-8), 1062-1069. https://doi.org/10.1016/j.actaastro.2010.09.025
  14. Thomson, M. (2002), "Astromesh deployable reflectors for ku and ka band commercial satellites", Proceedings of the 20th AIAA International Communications Satellite Systems Conference and Exhibit, Montreal, Canada, AIAA-2002-2032.
  15. Vassilopoulou, I. and Gantes, C.J. (2010), "Vibration modes and natural frequencies of saddle form cable nets", Comput. Struct., 88(1-2), 105-119. https://doi.org/10.1016/j.compstruc.2009.07.002
  16. Wang, L., Li, D.X. and Jiang, J.P. (2013), "Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures", Struct. Eng. Mech., 45(3), 407-418.
  17. Wang, Z.W., Li, T.J. and Deng, H.Q. (2014), "Form-finding analysis and active shape adjustment of cable net reflectors with pzt actuators", J. Aerospace Eng., 27(3), 575-586. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000273
  18. Yang, B., Shi, H., Thomson, M. and Fang, H. (2008), "Nonlinear modeling and surface mounting optimization for extremely large deployable mesh antenna reflectors", ASME International Mechanical Engineering Congress and Exposition, Boston, USA, October 31-November6.
  19. You, Z. (1997), "Displacement control of prestressed structures", Comput. Meth. Appl. Mech. Eng., 144(1-2), 51-59. https://doi.org/10.1016/S0045-7825(96)01164-4