DOI QR코드

DOI QR Code

연속적 차분 확장 기반 가역 DNA 워터마킹

Consecutive Difference Expansion Based Reversible DNA Watermarking

  • 이석환 (동명대학교 정보보호학과) ;
  • 권기룡 (부경대학교, IT융합응용공학과)
  • Lee, Suk-Hwan (Dept. of Information Security, Tongmyong University) ;
  • Kwon, Ki-Ryong (Dept. of IT Convergence and Application Eng., Pukyong National University)
  • 투고 : 2015.03.19
  • 심사 : 2015.06.27
  • 발행 : 2015.07.25

초록

대용량의 DNA 정보 저장, DNA 서열 저작권 보호를 위한 DNA 워터마킹, 및 비밀 통신을 위한 DNA 스테가노그라픽에 대한 관심이 증대되면서, 원본 DNA 서열의 기능 유지와 복원이 가능한 가역성 DNA 워터마킹이 필요하다. 본 논문에서는 비부호영역 DNA 서열을 이용한 DE(Difference expansion) 기반 가역 DNA 워터마킹 기법을 제안한다. 가역 DNA 워터마킹에서는 생물학적 기능 변경이 없고, 문자 형태의 서열 내에 대용량의 데이터를 은닉하여야 하며, 원본 DNA 서열이 복원되어야 한다. 제안한 방법에서는 문자 서열을 십진수 형태의 수치계수로 변환한 다음, 인접 수치 계수 쌍의 DE 기반 다중비트 은닉 방법(DE-MBE, DE based multiple bits embedding)과 이전 은닉 수치계수를 예측으로 한 연속 DE 기반 다중비트 은닉 방법들(C-DE-MBE, consecutive DE based multiple bits embedding)에 의하여 워터마크가 은닉된다. 은닉 과정에서는 워터마크된 서열에 의하여 부호영역을 나타내는 허위 시작코돈 발생을 방지하기 위하여 비교 탐색을 수행한다. 실험 결과로부터 제안한 방법이 기존 방법에 비하여 높은 은닉 용량을 가지며, 허위 시작코돈이 발생되지 않으며, 기준 서열없이 원본 DNA 서열이 복원됨을 확인하였다.

Of recent interests on high capacity DNA storage, DNA watermarking for DNA copyright protection, and DNA steganography for DNA secret communication are augmented, the reversible DNA watermarking is much needed both to embed the watermark without changing the functionality of organism and to perfectly recover the host DNA sequence. In this paper, we address two ways of DE based reversible DNA watermarking using noncoding DNA sequence. The reversible DNA watermarking should consider the string structure of a DNA sequence, the organism functionality, the perfect recovery, and the high embedding capacity. We convert the string sequence of four characters in noncoding region to the decimal coded values and embed the watermark bit into coded values by two ways; DE based multiple bits embedding (DE-MBE) using pairs of neighbor coded values and consecutive DE-MBE (C-DE-MBE). Two ways process the comparison searching to prevent the false start codon that produces false coding region. Experimental results verified that our ways have more high embedding capacity than conventional methods and produce no false start codon and recover perfectly the host sequence without the reference sequence. Especially C-DE-MBE can embed more high two times than DE-MBE.

키워드

참고문헌

  1. C. T. Clelland, V. Risca, C. Bancroft, "Hiding messages in DNA microdots," Nature, vol. 399, pp. 533-534, June 1999. https://doi.org/10.1038/21092
  2. D. Tulpan, C. Regoui, G. Durand, L. Belliveau, and S. Leger, "HyDEn: A hybrid steganocryptographic approach for data encryption using randomized error-correcting DNA codes," BioMed Research International, Article ID 634832, 2013.
  3. J. Cox, "Long-term data storage in DNA," TRENDS in Biotechnolgy, vol. 19, no. 7, pp. 247-250, July 2001. https://doi.org/10.1016/S0167-7799(01)01671-7
  4. N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E.M. LeProust, B. Sipos, E. Birney, "Towards practical high-capacity, low-maintenance information storage in synthesized DNA," Nature, vol. 494, pp. 77-80, Feb. 2013. https://doi.org/10.1038/nature11875
  5. D. Heider and A. Barnekow, "DNA Watermarks - A proof of concept," BMC Bioinformatics, vol. 9, no. 40, April 2008.
  6. M. Liss, D. Daubert, K. Brunner, K. Kliche, U. Hammes, A. Leiherer, and R. Wagner, "Embedding Permanent Watermarks in Synthetic Genes," PLOS ONE, vol. 7, issue 8, e42465, doi/10.1371/journal.pone.0042465, Aug. 2012.
  7. S.-H. Lee, "DNA sequence watermarking based on random circular angle," Digital Signal Processing, vol. 25, pp. 173-189, Feb. 2014. https://doi.org/10.1016/j.dsp.2013.11.010
  8. S.-H. Lee, "DWT based coding DNA watermarking for DNA copyright protection," Information Sciences, vol. 273, pp. 263-286, July 2014. https://doi.org/10.1016/j.ins.2014.03.039
  9. S.-H. Lee, K.-R. Kwon, and S.-G. Kwon, "A Robust DNA Watermarking in Lifting Based 1D DWT Domain," Journal of The Institute of Electronics Engineers of Korea, vol. 49, no. 10, pp. 91-101, Oct. 2012.
  10. S.-H. Lee, S.-G. Kwon, and K.-R. Kwon, "Robust DNA Watermarking based on Coding DNA Sequence," Journal of The Institute of Electronics Engineers of Korea, vol. 49, no. 2, pp. 123-133, March 2012.
  11. T. Chen, "A Novel Biology-Based Reversible Data Hiding Fusion Scheme," Frontiers in Algorithmics, Lecture Notes in Computer Science, Vol. 4613, pp 84-95, 2007.
  12. Y.-H. Huang, C.-C. Chang, and C.-Y. Wu, "A DNA-based data hiding technique with low modification rates," Multimedia Tools and Applications, vol. 70, issue 3, pp 1439-1451, June 2014. https://doi.org/10.1007/s11042-012-1176-z
  13. H.J. Shiu, K.L. Ng, J.F. Fang, R.C.T. Lee, and C.H. Huan, "Data hiding methods based upon DNA sequences," Information Sciences, vol. 180, issue 11, pp. 2196-2208, June 2010. https://doi.org/10.1016/j.ins.2010.01.030
  14. J. Tian, "Reversible data embedding using a difference expansion," IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, issue 8, pp. 890-896, Aug. 2003. https://doi.org/10.1109/TCSVT.2003.815962
  15. D. Coltuc, "Improved Embedding for Prediction-Based Reversible Watermarking," IEEE Trans. on Information Forensics and Security, vol. 6, no. 3, pp. 873-882, Sept. 2011. https://doi.org/10.1109/TIFS.2011.2145372

피인용 문헌

  1. Reversible Data Hiding for DNA Sequence Using Multilevel Histogram Shifting vol.2018, pp.1939-0122, 2018, https://doi.org/10.1155/2018/3530969
  2. A reversible watermarking for DNA sequence using an adaptive least square prediction error expansion vol.11, pp.1, 2015, https://doi.org/10.1587/nolta.11.2