DOI QR코드

DOI QR Code

Modeling of Various Digital Leaves Using Feature-based Image Warping

특징기반 영상 워핑을 활용한 다양한 디지털 잎 모델링

  • Kim, Jin-Mo (Catholic University of Pusan, Department of Software)
  • Received : 2015.02.17
  • Accepted : 2015.04.17
  • Published : 2015.04.30

Abstract

This study proposes a leaf modeling method that uses feature-based warping for efficient generation of various digital leaves. The proposed method uses warping method, one of image processing application techniques that can control various shapes of leaves in an easy, intuitive way, and generate natural patterns of veins efficiently. First, information on approximated contour is detected from a leaf blade image to identify the shape of a blade. Based on this, control line is automatically calculated to be used for feature-based warping. Then, control line-based warping is conducted to modify forms of leaf blade images in an intuitive way, automatically generating leaves of various shapes. And natural vein patterns are generated by applying a contour-based venation growth algorithm from contour information of the modified leaf blade images. This study performs experiments to verify whether various shape of leaves that comprise plants can be efficiently generated using a sample binary image of a blade. Also, we demonstrate that express the natural growth of leaves by applying warping to the growth of the leaf blade.

본 논문에서는 다양한 디지털 잎을 효율적으로 생성하기 위하여 특징기반 워핑을 활용한 잎 모델링 방법을 제시한다. 제안하는 방법은 다수의 다양한 잎의 형상을 쉽고 직관적으로 제어하고 이를 통해 자연스러운 잎맥 패턴을 효과적으로 성장할 수 있도록 영상처리 응용 기술 중 하나인 워핑 방법을 활용한다. 먼저 잎몸 영상으로부터 잎몸의 형상을 판단할 수 있는 근사화된 컨투어 정보를 찾고, 이를 기반으로 특징기반 워핑에 사용되는 제어선을 자동으로 계산한다. 다음으로 제어선기반 워핑을 통해 잎몸 영상을 직관적으로 변형함으로써 다양한 형상을 갖는 잎을 자동으로 생성할 수 있다. 그리고 변형된 잎몸 영상의 컨투어 정보들로부터 컨투어기반 잎맥 성장 알고리즘을 적용하여 자연스러운 잎맥 패턴을 생성한다. 본 논문에서는 잎몸에 해당하는 샘플 이진영상 한 장을 사용하여 식물을 구성하는 다양한 형상의 잎을 효율적으로 생성 가능한지 여부를 실험을 통해 입증한다. 또한 워핑을 잎몸의 성장에 적용하여 잎의 자연스러운 성장을 표현할 수 있음을 확인한다.

Keywords

References

  1. J. Kim and H. Cho, "Efficient modeling of numerous trees by introducing growth volume for real-time virtual ecosystems," Computer Animation and Virtual Worlds, Vol. 23, No. 3-4, pp.155-165, 2012. https://doi.org/10.1002/cav.1438
  2. S. Behrendt, C. Colditz, O. Franzke, J. Kopf, and O. Deussen, "Realistic real-time rendering of landscapes using billboard clouds," Computer Graphics Forum, Vol. 24, No.3, pp.507-516, 2005. https://doi.org/10.1111/j.1467-8659.2005.00876.x
  3. J. Kim, J. Kim, E. Kim and C. Kim, "Construction of library for 3D natural phenomena using 2D images,", Journal of Digital Contents Society, Vol.9, No.3, pp.461-470, 2008.
  4. A. Lindenmayer, "Mathematical models for cellular interaction in development," Journal of Theoretical Biology, Vol.18, pp.280-315, 1968. https://doi.org/10.1016/0022-5193(68)90079-9
  5. A. Runions, M. Fuhrer, B. Lane, P. Federl, A.G. Rolland-Lagan and P. Prusinkiewicz, "Modeling and visualization of leaf venation patterns," ACM Transactions on Graphics, Vol.23, No.3, pp.702-711, 2005.
  6. W. Palubicki, K. Horel, S. Longay, A. Runions, B.Lane, R. Mech and P. Prusinkiewicz, "Self-organizing tree models for image synthesis," ACM Transactions on Graphics, Vol.28, No.3, pp.58:1-58:10, 2009.
  7. P. Prusinkiewicz, M. James and R. Mech, "Synthetic topiary," In Proceedings of SIGGRAPH 1994, pp.351-358, 1994.
  8. C. Li, O. Deussen, Y. Z. Song, P. Willis and P. Hall, "Modeling and generating moving trees from video," ACM Transactions on Graphics, Vol.30, No.6, pp. 127:1-12, 2011.
  9. T. Beier and S. Neely, "Feature-based image metamorphosis," ACM SIGGRAPH Computer Graphics, Vol.26, No.2, pp.35-42, 1992. https://doi.org/10.1145/142920.134003
  10. J. Kim, "Contour-based procedural modeling of leaf venation patterns," Journal of Korea Game Society, Vol.14, No.5, pp.97-106, 2014. https://doi.org/10.7583/JKGS.2014.14.5.97
  11. P. Prusinkiewicz and J. Hanan, "Visualization of botanical structures and processes using parametricl-systems," Scientific visualization and graphics simulation, pp.183-201. John Wiley & Sons, 1990
  12. Y. Rodkaew, C. Lursinsap, T. Fujimoto and S. Siripant, "Modeling leaf shapes using l-systems and genetic algorithms," In International Conference NICOGRAPH, pp.73-78, 2002.
  13. A. Peyrat, O. Terraz, S. Merillou and E. Galin, "Generating vast varieties of realistic leaves with parametric 2GMap l-systems," The Visual Computer, Vol.24, No.7, pp.807-816, 2008. https://doi.org/10.1007/s00371-008-0262-8
  14. Y. Rodkaew, P. Chongstitvatana, S. Siripant and C. Lursinsap "Modeling plant leaves in marble-patterned colours with particle transportation system," In 4th International Workshop on Functional-Structural Plant Models, pp.391-397, 2004.
  15. L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang and S.B. Kang, "Image-based plant modeling," In SIGGRAPH '06: ACM Transactions on Graphics, Vol.25, No.3, pp.599-604, 2006.
  16. G.V.G. Baranoski and J.G. Rokne, "Efficiently simulating scattering of light by leaves," The Visual Computer, Vol.17, No.8 pp.491-505, 2001.
  17. L. Wang, W. Wang, J. Dorsey, X. Yang, B. Guo and H. Shum, "Real-time rendering of plant leaves," In ACM SIGGRAPH 2006 Courses, Article 5, 2006.
  18. S. Mochizuki, D. Cai, T. Komiri, H. Kimura and R. Hori, "Virtual autumn coloring system based on biological and fractal model," In Proceedings of the 9th Pacific Conference on Computer Graphics and Applications, pp.348-354. 2001.
  19. S. Jeong, S. Park and C. Kim, "Simulation of morphology changes in drying leaves," Computer Graphics Forum, Vol.32, No.1, pp.204-215, 2013. https://doi.org/10.1111/cgf.12009
  20. G. Wolberg, "Digital Image Warping," IEEE Computer Society Press, 1994.
  21. D. Douglas and T. Peucker, "Algorithms for the reduction of the number of points required to represent a digitized line or its caricature," The International Journal for Geographic Information and Geovisualization, Vol.10, No.2, pp.112-122, 1973. https://doi.org/10.3138/FM57-6770-U75U-7727

Cited by

  1. Procedural modeling and visualization of multiple leaves vol.23, pp.4, 2017, https://doi.org/10.1007/s00530-016-0503-z
  2. 가상 조경 생성을위한 디지털 잎 저작도구 개발 vol.21, pp.5, 2015, https://doi.org/10.15701/kcgs.2015.21.5.1