참고문헌
- Bert, C.W. and Birman, V. (1987), "Dynamic instability of shear deformable antisymmetric angle-ply plates", Int. J. Solid. Struct., 23(7), 1053-1061. https://doi.org/10.1016/0020-7683(87)90096-5
- Babu, S.C. and Kant, T. (1999), "Two shear deformable finite element models for buckling analysis of skew fibre-reinforced composite and sandwich panels", Compos. Struct., 46(2), 115-124. https://doi.org/10.1016/S0263-8223(99)00039-2
- Bolotin V.V. (1964), The Dynamic Stability of Elastic Systems, Holden-day, San Francisco.
- Chen, L.W. and Yang, J.Y. (1990), "Dynamic stability of laminated composite plates by the finite element method", Comput. Struct., 36(5), 845-851. https://doi.org/10.1016/0045-7949(90)90155-U
- Chen, C.S., Tsai, T.C., Chen, W.R. and Wei, C.L. (2013), "Dynamic stability analysis of laminated composite plates in thermal environments", Steel Compos. Struct., 15(1), 57-79. https://doi.org/10.12989/scs.2013.15.1.57
- Dey, P. and Singha, M.K. (2006), "Dynamic stability of composite skew plate subjected to periodic in plane load", Thin Wall. Struct., 44(9), 937-942. https://doi.org/10.1016/j.tws.2006.08.023
- Durvasula, S. (1970), "Buckling of clamped skew plates", AIAA J., 8(1) 178-181. https://doi.org/10.2514/3.5868
- Durvasula, S. (1971), "Buckling of simply supported skew plates", J. Eng. Mech. Div., 97(3), 967-979.
- Ganapathi, M., Boisse, P. and Solaut, D. (1999), "Nonlinear dynamic stability analysis of composite laminates under periodic in-plane compressive loads", Int. J. Numer. Meth. Eng., 46(6), 943-956. https://doi.org/10.1002/(SICI)1097-0207(19991030)46:6<943::AID-NME732>3.0.CO;2-L
- Kumar, Y. and Lal, R. (2011), "Buckling and vibration of orthotropic nonhomogeneous rectangular plates with bilinear thickness variation", J. Appl. Mech., 78(6), 061012. https://doi.org/10.1115/1.4003913
- Lee, S.Y. (2010), "Finite element dynamic stability analysis of laminated composite skew plates containing cutouts based on HSDT", Compos. Sci. Tech., 70(8), 1249-1257. https://doi.org/10.1016/j.compscitech.2010.03.013
- Liao, C.L. and Cheng, C.R. (1994), "Dynamic stability of stiffened laminated composite plates and shells subjected to in-plane pulsating forces", J. Sound Vib., 174(3), 335-351. https://doi.org/10.1006/jsvi.1994.1280
- Liew, K.M. and Lam, K.Y. (1990), "Application of two-dimensional orthogonal plate function to flexural vibration of skew plates", J. Sound Vib., 139(2), 242-252.
- Merritt, R.G. and Willems, N. (1973), "Parametric resonance of skew stiffened plates", J. Appl. Mech., 40(2), 439-444. https://doi.org/10.1115/1.3423003
- Moorthy, J., Reddy, J.N. and Plaut, R.H. (1990), "Parametric instability of laminated composite plates with transverse shear deformation", Int. J. Solid. Struct., 26(7), 801-811. https://doi.org/10.1016/0020-7683(90)90008-J
- Noh, M.H. and Lee, S.Y. (2014), "Dynamic instability of delaminated composite skew plates subjected to combined static and dynamic loads based on HSDT", Compos. Part B, 58, 113-121. https://doi.org/10.1016/j.compositesb.2013.10.073
- Panda, S.K. and Ramachandra, L.S. (2010), "Buckling of rectangular plates with various boundary conditions loaded by non-uniform in-plane loads", Int. J. Mech. Sci., 52(6), 819-828. https://doi.org/10.1016/j.ijmecsci.2010.01.009
- Patel, S.N., Datta, P.K. and Sheikh, A.H. (2006), "Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading", Struct. Eng. Mech., 22(4), 483-510. https://doi.org/10.12989/sem.2006.22.4.483
- Radu, A.G. and Chattopadhyay, A. (2002), "Dynamic stability of composite plates incuding delaminations using a higher order theory and transformation matrix approach", Int. J. Solid. Struct., 39(7), 1949-1965. https://doi.org/10.1016/S0020-7683(01)00168-8
- Prakash, T. and Ganapathi, M. (2005), "Dynamic instability of functionally graded material plates subjected to aero-thermo-mechanical loads", Struct. Eng. Mech., 20(4), 435-450. https://doi.org/10.12989/sem.2005.20.4.435
- Ramachandra, L.S. and Panda, S.K. (2012), "Dynamic instability of composite plates subjected to nonuniform in-plane loads", J. Sound Vib., 331(1), 53-65. https://doi.org/10.1016/j.jsv.2011.08.010
- Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Pres, Boca Raton.
- Reddy, J.N. (2007), Theory and Analysis of Elastic Plates and Shells, Taylor and Francis.
- Singh, B. and Chakraverty, S. (1994), "Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables", J. Sound Vib., 173(2), 157-178. https://doi.org/10.1006/jsvi.1994.1224
- Soldatos, K.P. (1991), "A refined laminated plate and shell theory with applications", J. Sound Vib., 144(1), 109-129. https://doi.org/10.1016/0022-460X(91)90736-4
- Srinivasan, R.S. and Chellapandi, P. (1986), "Dynamic stability of rectangular laminated composite plates", Comput. Struct., 24(2), 233-238. https://doi.org/10.1016/0045-7949(86)90282-8
- Timoshenko, S.P and Goodier, J.N. (1970), Theory of elastic stability, McGraw-Hill, New York.
- Takahashi, K. and Konishi, Y. (1988), "Dynamic stability of rectangular plate subjected to distributed inplane dynamic force", J. Sound Vib., 123(1), 115-127. https://doi.org/10.1016/S0022-460X(88)80082-8
- Udar, R.S. and Datta, P.K. (2007), "Dynamic combination resonance characteristics of doubly curved panels subjected to non-uniform tensile edge loading with damping", Struct. Eng. Mech., 25(4), 481. https://doi.org/10.12989/sem.2007.25.4.481
- Wang, C.M., Liew, K.M. and Alwis, W.A.M. (1992), "Buckling of skew plates and corner condition for simply supported edges", J. Eng. Mech., 118(4), 651-662. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:4(651)
- Wang, H., Chen C.S. and Fung, C.P. (2013), "Hygrothermal effects on dynamic instability of a laminated late under an arbitrary pulsating load", Struct. Eng. Mech., 48(1), 103-124. https://doi.org/10.12989/sem.2013.48.1.103
- Wang, S. (1997), "Buckling analysis of skew fibre-reinforced composite laminates based on first-order shear deformation plate theory", Comput. Struct., 37(1), 5-19. https://doi.org/10.1016/S0263-8223(97)00050-0
- Wang, X., Wang, X. and Shi, X. (2007), "Accurate buckling loads of thin rectangular plates under parabolic edge compressions by the differential quadrature method", Int. J. Mech. Sci., 49(4), 447-453. https://doi.org/10.1016/j.ijmecsci.2006.09.004
- Wu, G.Y. and Shih, Y.S. (2006), "Analysis of dynamic instability of arbitrarily laminated skew plates", J. Sound Vib., 292(1), 315-340. https://doi.org/10.1016/j.jsv.2005.07.042
피인용 문헌
- Resonance of a rectangular plate influenced by sequential moving masses vol.5, pp.1, 2016, https://doi.org/10.12989/csm.2016.5.1.087
- Analytical approach for dynamic instability analysis of functionally graded skew plate under periodic axial compression vol.130, 2017, https://doi.org/10.1016/j.ijmecsci.2017.05.050
- Linear and non-linear dynamic instability of functionally graded plate subjected to non-uniform loading vol.154, 2016, https://doi.org/10.1016/j.compstruct.2016.07.050
- On the Perturbation Methods for Vibration Analysis of Linear Time-Varying Systems vol.08, pp.03, 2016, https://doi.org/10.1142/S1758825116500356
- Dynamic instability characteristic of damped laminated composite conical shell panel under periodic axial compression pp.1537-6532, 2021, https://doi.org/10.1080/15376494.2019.1572841
- Auto-parametric resonance of framed structures under periodic excitations vol.61, pp.4, 2015, https://doi.org/10.12989/sem.2017.61.4.497
- Non-Linear dynamic pulse buckling of laminated composite curved panels vol.73, pp.2, 2015, https://doi.org/10.12989/sem.2020.73.2.181
- Combination resonances of imperfect SSFG cylindrical shells rested on viscoelastic foundations vol.75, pp.1, 2020, https://doi.org/10.12989/sem.2020.75.1.087
- Non-linear response and buckling of imperfect laminated composite plates under in-plane pulse forces vol.235, pp.22, 2015, https://doi.org/10.1177/0954406221996391