References
- Adams, G. (1995), "Critical speeds and the response of a tensioned beam on an elastic foundation to repetitive moving loads", Int. J. Mech. Sci., 37(7), 773-781. https://doi.org/10.1016/0020-7403(95)00008-L
- Adhikari, S., Murmu, T. and McCarthy, M.A. (2013), "Dynamic finite element analysis of axially vibrating nonlocal rods", Finite Elem. Anal. Des., 63, 42-50. https://doi.org/10.1016/j.finel.2012.08.001
- Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E: Low-Dim. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Bagdatli, S.M. (2015), "Non-linear vibration of nanobeams with various boundary condition based on nonlocal elasticity theory", Compos. Part B: Eng., 80, 43-52. https://doi.org/10.1016/j.compositesb.2015.05.030
- Bagdatli, S.M. and Uslu, B. (2015), "Free vibration analysis of axially moving beam under non-ideal conditions", Struct. Eng. Mech., 54(3), 597. https://doi.org/10.12989/sem.2015.54.3.597
- Bagdatli, S.M., Oz, H.R. and Ozkaya, E. (2011), "Non-linear transverse vibrations and 3:1 internal resonances of a tensioned beam on multiple supports", Math. Comput. Appl., 16(1), 203-215.
- Bagdatli, S.M., Oz, H.R. and Ozkaya, E. (2011), "Dynamics of axially accelerating beams with an intermediate support", J. Vib. Acoust., 133(3), 031013. https://doi.org/10.1115/1.4003205
- Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028
- Eringen, A.C. (1983), "On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves", J. Appl. Phys., 54(9), 4703-10. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, Newyork.
- Guo, Y. and Guo, W. (2003). "Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field", J. Appl. Phys., 36(7), 805-811.
- Kiani, K. (2013), "Longitudinal, transverse, and torsional vibrations and stabilities of axially moving singlewalled carbon nanotubes", Curr. Appl. Phys., 13(8), 1651-1660. https://doi.org/10.1016/j.cap.2013.05.008
- Kural S, and Ozkaya E, (2012), "Vibrations of an axially accelerating, multiple supported flexible beam", Struct. Eng. Mech., 44(4), 521-538. https://doi.org/10.12989/sem.2012.44.4.521
- Kural, S, and Ozkaya, E. (2015), "Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation", J. Vib. Control., doi: 10.1177/1077546315589666.
- Li, C., Lim, C.W., Yu, J. and Zeng, Q. (2011), "Transverse vibration of pre-tensioned nonlocal nanobeams with precise internal axial loads", Sci. China Tech. Sci., 54(8), 2007-2013. https://doi.org/10.1007/s11431-011-4479-9
- Lim, C.W., Li, C. and Yu, J. (2009a), "Free vibration of pre-tensioned nanobeams based on nonlocal stress theory", J. Zhejiang Univ. Sci. A, 11(1), 34-42. https://doi.org/10.1631/jzus.A0900048
- Lim, C.W., Li, C. and Yu, J.L. (2009b), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Int. Multis. Mech., 2(3), 223-233. https://doi.org/10.12989/imm.2009.2.3.223
- Lim, C.W., Li, C. and Yu, J.L. (2010), "Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach", Acta Mechanica Sinica, 26(5), 755-765. https://doi.org/10.1007/s10409-010-0374-z
- Lu, P. (2007), "Dynamic analysis of axially prestressed micro nanobeam structures based on nonlocal beam theory", J. Appl. Phys., 101(7), 073504. https://doi.org/10.1063/1.2717140
- Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solid. Struct., 44(16), 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034
- Main, J.A. and Jones, N.P. (2007a), "Vibration of tensioned beams with intermediate damper. I: formulation, influence of damper location", J. Eng. Mech., 133(4), 369-378. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(369)
- Main, J.A. and Jones, N.P. (2007b), "Vibration of tensioned beams with intermediate damper. I: formulation, influence of damper location", J. Eng. Mech., 133(4), 379-388. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(379)
- Main, J.A. and Jones, N.P. (2007c), "Vibration of tensioned beams with intermediate damper. II: damper near a support", J. Eng. Mech., 133(4), 379-388. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(379)
- Murmu, T. and Adhikari, S. (2012), "Nonlocal elasticity based vibration of initially pre-stressed coupled nanobeam systems", Eur. J. Mech. A/Solid., 34, 52-62. https://doi.org/10.1016/j.euromechsol.2011.11.010
- Mustapha, K.B. and Zhong, Z.W. (2010). "Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two-parameter elastic medium", Comput. Mater. Sci., 50(2), 742-751. https://doi.org/10.1016/j.commatsci.2010.10.005
- Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, John Wiley, New York, USA.
- Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillations, John Wiley, New York, USA.
- Ni, Q., Li, M., Tang, M. and Wang, L. (2014), "Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid", J. Sound Vib., 333(9), 2543-2555. https://doi.org/10.1016/j.jsv.2013.11.049
- Oz, H.R. (2002), "Natural Frequencies of Fluid Conveying Tensioned Pipes and Carrying a Stationary Mass under Different End Conditions", J. Sound Vib., 253(2), 507-517. https://doi.org/10.1006/jsvi.2001.4010
- OZ, H.R. (2003), "Natural frequencies of axially travelling tensioned beams in contact with a stationary mass", J. Sound Vib., 259(2), 445-456. https://doi.org/10.1006/jsvi.2002.5157
- Oz, H.R. and Boyaci, H. (2000), "Transverse vibrations of tensioned pipes conveying fluid with timedependent velocity", J. Sound Vib., 236(2), 259-276. https://doi.org/10.1006/jsvi.2000.2985
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Sears, A. and Batra, R. (2006), "Buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 73(8), 085410. https://doi.org/10.1103/PhysRevB.73.085410
- Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281. https://doi.org/10.1063/1.1625437
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Yurddas, A., Ozkaya, E. and Boyaci, H. (2013), "Nonlinear vibrations of axially moving multi-supported strings having non-ideal support conditions", Nonlin. Dyn., 73, 1223-44. https://doi.org/10.1007/s11071-012-0650-5
- Yurddas, A., Ozkaya, E. and Boyaci, H. (2014), "Nonlinear vibrations and stability analysis of axially moving strings having non-Ideal mid-support conditions", J. Vib. Control, 20(4), 518-534. https://doi.org/10.1177/1077546312463760
- Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
- Wang, Y.Z. and Li, F.M. (2014). "Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory", Int. J. Nonlin. Mech., 61, 74-79. https://doi.org/10.1016/j.ijnonlinmec.2014.01.008
Cited by
- Stability of fluid conveying nanobeam considering nonlocal elasticity vol.95, 2017, https://doi.org/10.1016/j.ijnonlinmec.2017.06.004
- Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects vol.50, 2017, https://doi.org/10.1016/j.apm.2017.06.019
- Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation vol.2016, pp.1, 2016, https://doi.org/10.1186/s13661-016-0561-3
- Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
- Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1125
- Nonlinear vibration of nanobeam with attached mass at the free end via nonlocal elasticity theory vol.22, pp.9, 2016, https://doi.org/10.1007/s00542-016-3062-5
- Size dependent nonlinear vibration of the tensioned nanobeam based on the modified couple stress theory vol.97, 2016, https://doi.org/10.1016/j.compositesb.2016.04.074
- Nonlinear Vibration of a Nanobeam on a Pasternak Elastic Foundation Based on Non-Local Euler-Bernoulli Beam Theory vol.21, pp.4, 2016, https://doi.org/10.3390/mca21010003
- The computation of bending eigenfrequencies of single-walled carbon nanotubes based on the nonlocal theory vol.9, pp.2, 2018, https://doi.org/10.5194/ms-9-349-2018
- Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation vol.61, pp.2, 2017, https://doi.org/10.12989/sem.2017.61.2.209
- Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation vol.24, pp.1, 2017, https://doi.org/10.12989/scs.2017.24.1.065
- Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles vol.27, pp.2, 2015, https://doi.org/10.12989/scs.2018.27.2.201
- Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory vol.66, pp.5, 2015, https://doi.org/10.12989/sem.2018.66.5.621
- Nonlinear Vibration of a Nonlocal Nanobeam Resting on Fractional-Order Viscoelastic Pasternak Foundations vol.2, pp.3, 2018, https://doi.org/10.3390/fractalfract2030021
- Safety evaluation method of tubing strings in high-pressure, high-temperature and high-yield gas wells based on FIV analysis vol.120, pp.None, 2015, https://doi.org/10.1016/j.engfailanal.2020.105044
- Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions vol.77, pp.4, 2021, https://doi.org/10.12989/sem.2021.77.4.535