DOI QR코드

DOI QR Code

A finite element-experimental study of the impact of spheres on aluminium thin plates

  • Micheli, Giancarlo B. (Group of Solid Mechanics and Structural Impact-GMSIE, Department of Mechatronics and Mechanical Systems Engineering, University of Sao Paulo) ;
  • Driemeier, Larissa (National Institute of Metrology, Quality and Technology-Inmetro) ;
  • Alves, Marcilio (Group of Solid Mechanics and Structural Impact-GMSIE, Department of Mechatronics and Mechanical Systems Engineering, University of Sao Paulo)
  • Received : 2013.07.20
  • Accepted : 2015.05.15
  • Published : 2015.07.25

Abstract

This paper describes a study of the collision of hard steel spheres against aluminium thin circular plates at speeds up to 140 m/s. The tests were monitored by a high speed camera and a chronoscope, which allowed the determination of the ballistic limit and the plate deformation pattern. Quasi-static material parameters were obtained from tests on a universal testing machine and dynamic mechanical characterization of two aluminium alloys were conducted in a split Hopkinson pressure bar. Using a damage model, the perforation of the plates was simulated by finite element analysis. Axisymmetric, shell and solid elements were employed with various parameters of the numerical analysis being thoroughly discussed, in special, the dynamic model parameters. A good agreement between experiments and the numerical analysis was obtained.

Keywords

Acknowledgement

Supported by : FAPESP, CAPES

References

  1. Alves, M. (2000), "Material constitutive law for large strains and strain rates", J. Eng. Mech., 126(2), 215-218. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:2(215)
  2. Alves, M. and Jones, N. (2002), "Impact failure of beams using damage mechanics: Part I - theory", Int. J. Impact Eng., 27(8), 837-861. https://doi.org/10.1016/S0734-743X(02)00017-9
  3. Alves, M. and Karagiozova, D. (2007), "Correction of frictional effects on Hopkinson pressure bar compression tests", Plasticity and Impact Mechanics, Eds. Bruhns, O.T. and Meyers, E., Eur. Univ. Press, Bochum.
  4. Alves, M., Karagiozova, D., Micheli, G.B. and Calle, M.A.G. (2012), "Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen", Int. J. Impact Eng., 49, 130-141. https://doi.org/10.1016/j.ijimpeng.2012.04.005
  5. Ansys (1998), Ansys Elements Reference, release 5.5, Ansys Inc., Canonsburg, PA, USA.
  6. Borvik, T., Langseth, M., Hopperstad, O.S. and Malo, K.A. (1999), "Ballistic penetration of steel plates", Int. J. Impact Eng., 22(9-10), 855-886. https://doi.org/10.1016/S0734-743X(99)00011-1
  7. Borvik, T., Hopperstad, O.S., Berstad, T. and Langseth, M. (2001a), "A computational model of viscoplasticity and ductile damage for impact and penetration", Eur. J. Mech. A Solid, 20(5), 685-712. https://doi.org/10.1016/S0997-7538(01)01157-3
  8. Borvik, T., Hopperstad, O.S., Berstad, T. and Langseth, M. (2001b), "Numerical simulation of plugging failure in ballistic penetration", Int. J. Solid. Struct., 38(34-35), 6241-6264. https://doi.org/10.1016/S0020-7683(00)00343-7
  9. Borvik, T., Langseth, M., Hopperstad, O.S. and Malo, K.A. (2002a), "Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses. Part I: experimental study", Int. J. Impact Eng., 27(1), 19-35. https://doi.org/10.1016/S0734-743X(01)00034-3
  10. Borvik, T., Hopperstad, O.S., Berstad, T. and Langseth, M. (2002b), "Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses. Part II: numerical simulations", Int. J. Impact Eng., 27(1), 37-64. https://doi.org/10.1016/S0734-743X(01)00035-5
  11. Borvik, T., Clausen, A.H., Eriksson, M., Berstad, T., Hopperstad, O.S. and Langseth, M. (2005),"Experimental and numerical study on the perforation of AA6005-T6 panels", Int. J. Impact Eng., 32(1-4), 35-64. https://doi.org/10.1016/j.ijimpeng.2005.05.001
  12. Charoenphan, S. (2002), "Computer methods for modelling the progressive damage of composite material plates and tubes", Ph.D. Dissertation, Univ. Wisconsin-Madison, Madison.
  13. Forrestal, M.J., Okajima, K. and Luk, V.K. (1998), "Penetration of 6061-T651 aluminum targets with rigid long rods", J. Appl. Mech., 55(4), 755-760. https://doi.org/10.1115/1.3173718
  14. Gupta, N.K., Iqbal, M.A. and Sekhon, G.S. (2006), "Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles", Int. J. Impact Eng., 32(12), 1921-1944. https://doi.org/10.1016/j.ijimpeng.2005.06.007
  15. Hallquist, J.O. (2006), LS-DYNA Theory Manual, Livermore Software Technology Corporation, Livermore, CA, USA.
  16. Holmen, J.K., Johnsen, J., Jupp, S., Hopperstad, O.S. and Borvik, T. (2013), "Effects of heat treatment on the ballistic properties of AA6070 aluminium alloy", Int. J. Impact Eng., 57, 119-133. https://doi.org/10.1016/j.ijimpeng.2013.02.002
  17. Knight, N.F., Jaunky, N., Lawson, R.E. and Ambur, D.R. (2000), "Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-Dyna", Finite Elem. Anal. Des., 36(2), 99-133. https://doi.org/10.1016/S0168-874X(00)00011-1
  18. Kurtaran, H., Buyuk, M. and Eskandarian, A. (2003), "Ballistic impact simulation of GT model vehicle door using finite element method", Theor. Appl. Fract. Mech., 40(2), 113-121. https://doi.org/10.1016/S0167-8442(03)00039-9
  19. Lemaitre, J. (1992), A Course on Damage Mechanics, Springer-Verlag, Berlin, Germany.
  20. Livermore Software Technology Corporation (2003), LS-DYNA Keyword User's Manual, (version 970), LSTC, Livermore, CA, USA.
  21. Ravid, M. and Bodner, S.R. (1993), "Dynamic perforation of viscoplastic plates by rigid projectiles", Int. J. Eng. Sci., 21(6), 577-591. https://doi.org/10.1016/0020-7225(83)90105-2
  22. Recht, R.F. and Ipson, T.W. (1963), "Ballistic perforation dynamics", J. Appl. Mech., 30(3), 384-390. https://doi.org/10.1115/1.3636566
  23. Roeder, B.A. and Sun, C.T. (2001), "Dynamic penetration of alumina/aluminum laminates: experiments and modeling", Int. J. Impact Eng., 25(2), 169-185. https://doi.org/10.1016/S0734-743X(00)00031-2
  24. Sciuva, M.D., Frola, C. and Salvano, S. (2003), "Low and high velocity impact on Inconel 718 casting plates: ballistic limit and numerical correlation", Int. J. Impact Eng., 28(8), 849-876. https://doi.org/10.1016/S0734-743X(02)00156-2
  25. Song, B. and Chen, W. (2005), "Split Hopkinson pressure bar techniques for characterizing soft materials", Lat. Am. J. Solid. Struct., 2(2), 113-152.
  26. Teng, X. and Wierzbicki, T. (2006), "Evaluation of six fracture models in high velocity perforation", Eng. Fract. Mech., 73(12), 1653-1678. https://doi.org/10.1016/j.engfracmech.2006.01.009
  27. Tiwari, G., Iqbal M.A., Gupta P.K. and Gupta, N.K. (2014), "The ballistic resistance of thin aluminium plates with varying degrees of fixity along the circumference", Int. J. Impact Eng., 74, 46-56. https://doi.org/10.1016/j.ijimpeng.2014.01.007
  28. Yadav, S., Repetto, E.A., Ravichandran, G. and Ortiz, M. (2001), "A computational study of the influence of thermal softening on ballistic penetration in metals", Int. J. Impact Eng., 25(8), 787-803. https://doi.org/10.1016/S0734-743X(01)00008-2

Cited by

  1. Polypropylene fiber reinforced concrete plates under fluid impact. Part I: experiments vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.211
  2. Polypropylene fiber reinforced concrete plates under fluid impact. Part II: modeling and simulation vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.225