참고문헌
- Buchanan, G.R. and Rich, B.S. (2002), "Effect of boundary conditions on free vibration of thick isotropic spherical shells", J. Vib. Control, 8, 389-403. https://doi.org/10.1177/107754602023688
- Chang, Y.C. and Demkowicz, L. (1995), "Vibrations of a spherical shell: comparison of 3D elasticity and Kirchhoff shell theory", Comput. Assi. Mech. Eng. Sci., 2(3), 187-206.
- Chree, C. (1889), "The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and application", Tran. Cambrid. Phil. Soc. Math. Phys. Sci., 14, 250-269.
- Cohen, H. and Shah, A.H. (1972), "Free vibrations of a spherically isotropic hollow sphere", Acustica, 26, 329-340.
- Ding, H. and Chen, W. (1996), "Nonaxisymmetric free vibrations of a spherically isotropic spherical shell embedded in an elastic medium", Int. J. Solid. Struct., 33 (18), 2575-2590. https://doi.org/10.1016/0020-7683(95)00171-9
- Fadaee, M., Atashipour, S.R. and Hosseini-Hashemi, S. (2013), "Free vibration analysis of Levy-type functionally graded spherical shell panel using a new exact closed-form solution", Int. J. Mech. Sci., 77, 227-238. https://doi.org/10.1016/j.ijmecsci.2013.10.008
- Fazzolari, F.A. (2014), "A refined dynamic stiffness element for free vibration analysis of cross-ply laminated composite cylindrical and spherical shallow shells", Compos. PartB: Eng., 62, 143-158. https://doi.org/10.1016/j.compositesb.2014.02.021
- Ghavanloo, E and Fazelzadeh, S.A. (2013), "Nonlocal elasticity theory for radial vibration of nanoscale spherical shells", Eur. J. Mech. A Solid., 41, 37-42. https://doi.org/10.1016/j.euromechsol.2013.02.003
- Grigorenko, Y.M. and Kilina, T.N. (1990), "Analysis of the frequencies and modes of natural vibration of laminated hollow sphere in two- and three-dimensional formulations", Soviet Appl. Mech., 25(12), 1165-1171. https://doi.org/10.1007/BF00887140
- Jaerisch, P. (1880), Journal of Mathematics (Crelle) Bd. 88.
- Jiang, H., Young, P.G. and Dickinson, S.M. (1996), "Natural frequencies of vibration of layered hollow spheres using exact three-dimensional elasticity equations", J. Sound Vib., 195 (1), 155-162. https://doi.org/10.1006/jsvi.1996.0412
- Kang, J.H. (2012), "Vibrations of hemi-spherical shells of revolution with eccentricity from a threedimensional theory", J. Vib. Control, 18(13), 2017-2030. https://doi.org/10.1177/1077546311429061
- Kang, J.H. (2013), "Vibration analysis of hemispherical shells of revolution having variable thickness with and without axial conical holes from a three-dimensional theory", J. Eng. Mech., 139(7), 925-927. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000462
- Kang, J.H. and Leissa, A.W. (2004), "Three-dimensional vibration analysis of solid and hollow hemispheres having varying thickness with and without axial conical holes", J. Vib. Control, 10(2), 199-214. https://doi.org/10.1177/107754604773732151
- Kantorovich, L.V. and Krylov, V.I. (1958), Approximate Methods of Higher Analysis, Noordhoff, Groningen.
- Lamb, H. (1882), Proceedings, London Mathematical Society, 13, 189-212.
- McGee, O.G. and Leissa, A.W. (1991), "Three-dimensional free vibrations of thick skewed cantilever plates", J. Sound Vib., 144, 305-322. https://doi.org/10.1016/0022-460X(91)90751-5
- McGee, O.G. and Spry, S.C. (1997), "A three-dimensional analysis of the spheroidal and toroidal elastic vibrations of thick-walled spherical bodies of revolution", Int. J. Numer. Meth. Eng., 40, 1359-1382. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1359::AID-NME14>3.0.CO;2-J
- Panda, S.K. and Singh, B.N. (2009), "Nonlinear free vibration of spherical shell panel using higher order shear deformation theory-A finite element approach", Int. J. Press. Ves. Pip., 86(6), 373-383. https://doi.org/10.1016/j.ijpvp.2008.11.023
- Poisson, S.D. (1829), "Memoire sur l'equilibre et le mouvement des corps elastiques", Memoires de t'Academie des Sciences, Paris, 8.
- Qatu, M.S. (2002), "Recent research advances in the dynamic behavior of shells: 1989-2000, part 2: homogeneous shells", Appl. Mech. Rev., 55, 415-34. https://doi.org/10.1115/1.1483078
- Sahoo, S. (2014) "Laminated composite stiffened shallow spherical panels with cutouts under free vibration-A finite element approach", Eng. Sci. Tech., 17(4), 247-259.
- Sato, Y. and Usami, T. (1962), "Basic study on the oscillation of a homogeneous elastic sphere. Part II: Distribution of displacement", Geoph. Mag., 31, 25-47.
- Shah, A.H., Ramkrishnan, C.V. and Datta, S.K. (1969), "Three-dimensional and shell theory analysis of elastic waves in a hollow sphere", J. Appl. Mech., 36, 431-444. https://doi.org/10.1115/1.3564698
- Sokolnikoff, I.S. (1956), Mathematical Theory of Elasticity, 2nd Edition, McGraw-Hill Book Co., New York.
- Su, Z., Jin, G., Shi, S. and Ye, T. (2014), "A unified accurate solution for vibration analysis of arbitrary functionally graded spherical shell segments with general end restraints", Compos. Struct., 111, 271-284. https://doi.org/10.1016/j.compstruct.2014.01.006
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "The local GDQ method applied to general higher-order theories of doubly-curved laminated composite shells and panels: The free vibration analysis", Compos. Struct., 116, 637-660. https://doi.org/10.1016/j.compstruct.2014.05.008
- Ye, T., Jin, G. and Su, Z. (2014), "Three-dimensional vibration analysis of laminated functionally graded spherical shells with general boundary conditions", Compos. Struct., 116, 571-588. https://doi.org/10.1016/j.compstruct.2014.05.046