References
- Akaydin, H., Pierides, A., Weinbaum, S. and Andreopoulos, Y. (2011), "Permeability of soft porous media under one-dimensional compaction", Chem. Eng. Sci., 66(1), 1-14. https://doi.org/10.1016/j.ces.2010.09.017
- Auriault, J.L. and Lewandowska, J. (1994), "On the cross-effects of coupled macroscopic transport equations in porous media", Transport Porous Med., 16(1), 31-52. https://doi.org/10.1007/BF01059775
- Boutt, D.F., Cook, B.K. and Williams, J.R. (2011), "A coupled fluid-solid model for problems in geomechanics: application to sand production", Int. J. Numer. Anal. Method. Geomech., 35(9), 997-1018. https://doi.org/10.1002/nag.938
- Chen, Z., Lyons, S.L. and Qin, G. (2001), "Derivation of the forchheimer law via homogenization", Transport Porous Med., 44(2), 325-335. https://doi.org/10.1023/A:1010749114251
- Dai, Y.H. (2006), "CT testing analysis and constitutive model study of unsaturated slates", The Chinese Academy of Science, Wuhan Institute of Rock & Soil Mechanics. [In Chinese]
- Guerroudj, N. and Kahalerras, H. (2012), "Mixed convection in an inclined channel with heated porous blocks", Int. J. Numer. Method. Heat Fluid Flow, 22(7), 839-861. https://doi.org/10.1108/09615531211255743
-
Hang, S.C., Hoon, C.P. and Yeon, S.C. (2012), "The effect of micro-pore configuration on the flow and thermal fields of supercritical
$CO_2$ ", Environ. Eng. Res., 17(2), 83-88. https://doi.org/10.4491/eer.2012.17.2.083 - Ichikawa, Y., Kawamura, K., Nakano, M., Kitayama, K. and Kawamura, H. (1999), "Unified molecular dynamics and homogenization analysis for bentonite behaviour: current results and future possibilities", Eng. Geol., 54(1-2), 21-31. https://doi.org/10.1016/S0013-7952(99)00058-7
- Jeong, N. (2010), "Advanced study about the permeability for micro-porous structure using the Lattice Boltzmann method", Transport Porous Med., 83(2), 271-288. https://doi.org/10.1007/s11242-009-9438-6
- Kim, J.H., Ochoa, J.A. and Whitaker, S. (1987), "Diffusion in anisotropic porous media", Transport in Porous Media, 2(4), 327-356. https://doi.org/10.1007/BF00136440
- Lemaitre, R. and Adler, P.M. (1990), "Fractal porous media IV: Three-dimensional stokes flow through random media and regular fractals", Transport Porous Med., 5(4), 325-340. https://doi.org/10.1007/BF01141990
- Mao C.X. (2003), Seepage Computation Analysis & Control, China Water & Power Press, Beijing, China. [In Chinese]
- Pradeep, B., Clinton, S.W. and Karsten, E.T. (2011), "Effect of network structure on characterization and flow modeling using X-ray micro-tomography images of granular and fibrous porous media", Transport Porous Med., 90(2), 363-391. https://doi.org/10.1007/s11242-011-9789-7
- Pradhan, A.K., Das, D., Chattopadhyay, R. and Singh, S.N. (2012), "Effect of 3D fiber orientation distribution on transverse air permeability of fibrous porous media", Powder Technology, 221,101-104. https://doi.org/10.1016/j.powtec.2011.12.027
- Saeed, O. and Mohammd, P. (2010), "Direct pore-level modeling of incompressible fluid flow in porous media", J. Computat. Phys., 229(29), 7456-7476. https://doi.org/10.1016/j.jcp.2010.06.028
- Shou, D., Fan, J. and Ding, F. (2011), "Hydraulic permeability of fibrous porous media", International J. Heat Mass Transfer, 54(17-18), 4009-4018. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.022
- Valliappan, S. and Zhang, W.H. (1996), "Numerical modeling of methane gas migration in dry coal seam", Int. J. Numer. Anal. Method. Geomech., 20(8), 571-594. https://doi.org/10.1002/(SICI)1096-9853(199608)20:8<571::AID-NAG840>3.0.CO;2-0
- Valliappan, S. and Zhang, W.H. (1999), "Role of gas energy during outbursts", Int. J. Numer. Method. Eng., 44(7), 875-895. https://doi.org/10.1002/(SICI)1097-0207(19990310)44:7<875::AID-NME527>3.0.CO;2-G
- Wang, J., Li, S.C., Li, L.P., Zhu, W.S., Zhang, Q.Y. and Song, S.G. (2014), "Study on anchorage effect on fractured rock", Steel Compos. Struct., Int. J., 17(6), 791-801. https://doi.org/10.12989/scs.2014.17.6.791
- Yang, T. and Wang, L. (2000), "Microscale flow bifurcation and its macroscale implications in periodic porous media", Computat. Mech., 26(6), 520-527. https://doi.org/10.1007/s004660000201
- You, L.J., Xue, K.L., Kang, Y.L. and Kong, L. (2013), "Pore structure and limit pressure of gas slippage effect in tight sandstone", The Sci. World J., 28, 1-7.
- Yue, W.Z., Tao, G., Zheng, X.C. and Luo, N. (2011), "Numerical experiments of pore scale for electrical properties of saturated digital rock", Int. J. Geosci., 2,148-154. https://doi.org/10.4236/ijg.2011.22015
- Zhang, W.H. (1999), "Damage mechanism of failure localization in coal seams during coal/gas outburst", Chinese J. Geotech. Eng., 21(6), 731-736. [In Chinese]
Cited by
- Evaluation of Pore Size and Distribution Impacts on Uniaxial Compressive Strength of Lithophysal Rock 2018, https://doi.org/10.1007/s13369-017-2810-x
- Study on the splitting failure of the surrounding rock of underground caverns vol.14, pp.5, 2018, https://doi.org/10.12989/gae.2018.14.5.499
- Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression vol.16, pp.3, 2018, https://doi.org/10.12989/gae.2018.16.3.273
- A plastic strain based statistical damage model for brittle to ductile behaviour of rocks vol.21, pp.4, 2020, https://doi.org/10.12989/gae.2020.21.4.349
- Research on Strength Prediction Model of Sand-like Material Based on Nuclear Magnetic Resonance and Fractal Theory vol.10, pp.18, 2015, https://doi.org/10.3390/app10186601