DOI QR코드

DOI QR Code

Modification methods of polyethersulfone membranes for minimizing fouling - Review

  • Sathish Kumar, R. (Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology) ;
  • Arthanareeswaran, G. (Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology) ;
  • Paul, Diby (Department of Environmental Engineering, Konkuk University) ;
  • Kweon, Ji Hyang (Department of Environmental Engineering, Konkuk University)
  • Received : 2014.04.18
  • Accepted : 2015.04.09
  • Published : 2015.07.25

Abstract

Membrane Fouling was considered as major drawback in various industrial applications. Thus, this paper reviews the surface modification of polyethersulfone (PES) membranes for antifouling performance. Various modification techniques clearly indicate that hydrophilicity has to improve on the PES membrane surface. Moreover, the mechanism of fouling reduction with corresponds to various modification methods is widely discussed. Incorporation of hydrophilic functional groups on PES membrane surface enhances the surface free energy thereby which reduces the fouling. Characterization techniques adopted for the surface modified membranes was also discussed. These studies might be useful for the other researchers to utilize the modification technique for the applications of waste water treatment, chemical process industry and food industry.

Keywords

Acknowledgement

Supported by : Department of Science and Technology, India

References

  1. Ahmed, I., Idris, A., Noordin, M.Y. and Rajput, R. (2011), "High performance ultrafiltration membranes prepared by the application of modified microwave irradiation technique", Ind. Eng. Chem. Res., 50(4), 2272-2283. https://doi.org/10.1021/ie1017223
  2. Ali, N. and Tari, S.S.M. (2012), "Surface modification of polyethersulfone ultrafiltration (PES-UF) membrane using myoglobin as modifying agent", Desal. Water Treat., 47(1-3), 171-181. https://doi.org/10.1080/19443994.2012.696820
  3. Ananth, A., Arthanareeswaran, G. and Wang, H. (2012), "The influence of tetraethylorthosilicate and polyethyleneimine on the performance of polyethersulfone membranes", Desalination, 287, 61-70. https://doi.org/10.1016/j.desal.2011.11.030
  4. Arthanareeswaran, G. and Thakur, R.S. (2012), "Effect of inorganic particle on the performance of polyethersulfone-cellulose acetate ultrafiltration membranes", In: Sustainable Membrane Technology for Energy, Water and Environment, (1st Edition), John Wiley and Sons, Inc., NJ, USA.
  5. Atiyeh, H.K. and Duvnjak, Z. (2005), "Purification of fructose syrups produced from cane molasses media using ultrafiltration membranes and activated carbon", Sep. Sci. Technol., 39(2), 341-362. https://doi.org/10.1081/SS-120027562
  6. Belfer, S., Fainchtain, R., Purinson, Y. and Kedem, O. (2000), "Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled", J. Membr. Sci., 172(1-2), 113-124. https://doi.org/10.1016/S0376-7388(00)00316-1
  7. Bhattacharya, A. and Misra, B.N. (2004), "Grafting: A versatile means to modify polymers techniques, factors and applications", Prog. Polym. Sci., 29(8), 767-814. https://doi.org/10.1016/j.progpolymsci.2004.05.002
  8. Borneman, Z., Gtkmen, V. and Nijhuis, H.H. (1997), "Selective removal of polyphenols and brown colour in apple juices using PES/PVP membranes in a single-ultrafiltration process", J. Membr. Sci., 134(2), 191-197. https://doi.org/10.1016/S0376-7388(97)00105-1
  9. Celik, E., Liu, L. and Choi, H. (2011), "Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration", Water Res., 45(16), 5287-5294. https://doi.org/10.1016/j.watres.2011.07.036
  10. Daraei, P., Madaeni, S.S., Ghaemi, N., Salehi, E., Khadivi, M.A., Moradian, R. and Astinchap, B. (2012), "Novel polyethersulfone nanocomposite membrane prepared by PANI/$Fe_3O_4$ nanoparticles with enhanced performance for Cu(II) removal from water", J. Membr. Sci., 415-416, 250-259. https://doi.org/10.1016/j.memsci.2012.05.007
  11. Daraei, P., Madaeni, S.S., Ghaemi, N., Khadivi, M.A., Astinchap, B. and Moradian, R. (2013), "Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube", J. Membr. Sci., 444, 184-191. https://doi.org/10.1016/j.memsci.2013.05.020
  12. Dong, Y., Su, Y., Chen, W., Peng, J., Zhang, Y. and Jiang, Z. (2011), "Ultrafiltration enhanced with activated carbon adsorption for efficient dye removal from aqueous solution", Chin. J. Chem. Eng., 19(5), 863-869. https://doi.org/10.1016/S1004-9541(11)60066-9
  13. Fang, B., Cheng, C., Li, L., Cheng, J., Zhao, W. and Zhao, W. (2010), "Surface modification of polyethersulfone membrane by grafting bovine serum albumin", Fiber Polym., 11(7), 960-966. https://doi.org/10.1007/s12221-010-0960-5
  14. Goddard, J.M. and Hotchkiss, J.H. (2007), "Polymer surface modification for the attachment of bioactive compounds", Prog. Polym. Sci., 32(7), 698-725. https://doi.org/10.1016/j.progpolymsci.2007.04.002
  15. Huang, J., Xue, J., Xiang, K., Zhang, X., Cheng, C., Sun, S. and Zhao, C. (2011), "Surface modification of polyethersulfone membranes by blending triblock copolymers of methoxyl poly(ethylene glycol)-polyurethane-methoxyl poly(ethylene glycol)", Colloids Surf., B, 88(1), 315-324. https://doi.org/10.1016/j.colsurfb.2011.07.008
  16. Huang, J., Wang, H. and Zhang, K. (2014), "Modification of PES membrane with Ag-SiO2: Reduction of biofouling and improvement of filtration performance", Desalination, 336, 8-17. https://doi.org/10.1016/j.desal.2013.12.032
  17. Jamshidi Gohari, R., Lau, W.J., Matsuura, T., Halakoo, E. and Ismail, A.F. (2013), "Adsorptive removal of Pb(II) from aqueous solution by novel PES/HMO ultrafiltration mixed matrix membrane", Sep. Purif. Technol., 120, 59-68. https://doi.org/10.1016/j.seppur.2013.09.024
  18. Jamshidi Gohari, R., Halakoo, E., Lau, W.J., Kassim, M.A., Matsuura, T. and Ismail, A.F. (2014), "Novel polyethersulfone (PES) / hydrous manganese dioxide (HMO) mixed matrix membranes with improved anti-fouling properties for oily wastewater treatment process", RSC Adv., 4(34), 17587-17596. https://doi.org/10.1039/c4ra00032c
  19. Kilduft, J.E. Mattaraj, S., Pieracci, J.P. and Belfort, G. (2000), "Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter", Desalination, 132(1-3), 133-142. https://doi.org/10.1016/S0011-9164(00)00142-9
  20. Li, J.-F., Xu, Z.-L., Yang, H., Yu, L.-Y. and Liu, M. (2009), "Effect of $TiO_2$ nanoparticles on the surface morphology and performance of microporous PES membrane", Appl. Surf. Sci., 255(9), 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139
  21. Li, L., Cheng, C., Xiang, T., Tang, M., Zhao, W., Sun, S., and Zhao, C. (2012), "Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity", J. Membr. Sci., 405-406, 261-274. https://doi.org/10.1016/j.memsci.2012.03.015
  22. Li, F., Meng, J., Ye, J., Yang, B., Tian, Q. and Deng, C. (2014), "Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: Morphology, stability, and anti-fouling", Desalination, 344, 422-430. https://doi.org/10.1016/j.desal.2014.04.011
  23. Lin, Y.C., Brayfield, C.A., Gerlach, J.C., Rubin, J.P. and Marra, K.G. (2009), "Peptide modification of polyethersulfone surfaces to improve adipose-derived stem cell adhension", Acta Biomater., 5(5), 1416-1424. https://doi.org/10.1016/j.actbio.2008.11.031
  24. Ling, Q., Zhao, W., Ma, Y., Bai, P., Wei, Q. and Li, H. (2009), "Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/poly (acrylonitrile-co-acrylic acid) blended membrane", J. Membr. Sci., 329(1-2), 46-55. https://doi.org/10.1016/j.memsci.2008.12.008
  25. Liu, S.X. and Kim, J.-T. (2012), "Characterization of surface modification of polyethersulfone membrane", J. Adhes. Sci. Technol., 25(1-3), 193-212. https://doi.org/10.1163/016942410X503311
  26. Liu, S., Yu, H., Zhou, L., Wang, P., Shao, Z. and Yi, B. (2012), "Silicon modified ultrafiltration-based proton-conductive membranes with improved performance for $H_2/Cl_2$ fuel cell application", Int. J. Hydrogen Energy, 37(15), 11425-11430. https://doi.org/10.1016/j.ijhydene.2012.04.096
  27. Marshall, A.D., Munro, P.A. and Tragardh, G. (1993), "The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity - A literature review", Desalination, 91, 65-108. https://doi.org/10.1016/0011-9164(93)80047-Q
  28. Maximous, N., Nakhla, G., Wan, W. and Wong, K. (2010), "Performance of a novel $ZrO_2$/PES membrane for wastewater filtration", J. Membr. Sci., 352(1-2), 222-230. https://doi.org/10.1016/j.memsci.2010.02.021
  29. Mierzwa, J.C., Arieta, V., Verlage, M., Carvalho, J. and Vecitis, C.D. (2013), "Effect of clay nanoparticles on the structure and performance of polyethersulfone ultrafiltration membranes", Desalination, 314, 147-158. https://doi.org/10.1016/j.desal.2013.01.011
  30. Mingliang, L.U.O., Qingzhi, W.E.N., Jialin, L.I.U., Hongjian, L.I.U. and Zilong, J.I.A. (2011), "Fabrication of SPES / Nano-$TiO_2$ composite ultrafiltration membrane and its anti-fouling mechanism", Chin. J. Chem. Eng., 19(1), 45-51. https://doi.org/10.1016/S1004-9541(09)60175-0
  31. Mu, L.-J. and Zhao, W.-Z. (2009), "Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach", Appl. Surf. Sci., 255(16), 7273-7278. https://doi.org/10.1016/j.apsusc.2009.03.081
  32. Nady, N., Franssen, M.C.R., Zuilhof, H., Eldin, M.S.M., Boom, R. and Schroen, K. (2011), "Modification methods for poly(arylsulfone) membranes: A mini-review focusing on surface modification", Desalination, 275(1-3), 1-9. https://doi.org/10.1016/j.desal.2011.03.010
  33. Nady, N., Schroen, K., Franssen, M.C.R., Fokkink, R., Mohy Eldin, M.S., Zuilhof, H. and Boom, R.M. (2012), "Enzyme-catalyzed modification of PES surfaces: Reduction in adsorption of BSA, dextrin and tannin", J. Colloid Interface Sci., 378(1), 191-200. https://doi.org/10.1016/j.jcis.2012.04.019
  34. Oh, Y., Lee, M. and Kim, T. (2009), "Development of crosslinked sulfonated poly (ether sulfone)s as novel polymer electrolyte membranes", J. Korean Chem. Soc., 53(3), 345-354. https://doi.org/10.5012/jkcs.2009.53.3.345
  35. Peeva, P.D., Pieper, T. and Ulbricht, M. (2010), "Tuning the ultrafiltration properties of anti-fouling thin-layer hydrogel polyethersulfone composite membranes by suited crosslinker monomers and photo-grafting conditions", J. Membr. Sci., 362(1-2), 560-568. https://doi.org/10.1016/j.memsci.2010.07.016
  36. Peeva, P.D., Million, N. and Ulbricht, M. (2012), "Factors affecting the sieving behavior of anti-fouling thin-layer cross-linked hydrogel polyethersulfone composite ultrafiltration membranes", J. Membr. Sci., 390-391, 99-112. https://doi.org/10.1016/j.memsci.2011.11.025
  37. Pieracci, J., Crivello, J.V. and Belfort, G. (1999), "Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling", J. Membr. Sci.,156(2), 223-240. https://doi.org/10.1016/S0376-7388(98)00347-0
  38. Pourjafar, S., Rahimpour, A. and Jahanshahi, M. (2012), "Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with $TiO_2$ nanoparticles for better performance and surface properties", Ind. Eng. Chem. Res.,18(4), 1398-1405. https://doi.org/10.1016/j.jiec.2012.01.041
  39. Prihandana, G., Sanada, I., Ito, H., Noborisaka, M., Kanno, Y., Suzuki, T. and Miki, N. (2013), "Antithrombogenicity of fluorinated diamond-like carbon films coated nano porous polyethersulfone (PES) Membrane", Materials, 6(10), 4309-4323. https://doi.org/10.3390/ma6104309
  40. Qin, H., Sun, C., He, C., Wang, D., Cheng, C., Nie, S., Sun, S. and Zhao, C. (2014), "High efficient protocol for the modification of polyethersulfone membranes with anticoagulant and antifouling properties via in situ cross-linked copolymerization", J. Membr. Sci., 468, 172-183. https://doi.org/10.1016/j.memsci.2014.06.006
  41. Rahimpour, A., Madaeni, S.S., Taheri, A.H. and Mansourpanah, Y. (2008), "Coupling $TiO_2$ nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes", J. Membr. Sci., 313(1-2), 158-169. https://doi.org/10.1016/j.memsci.2007.12.075
  42. Rahimpour, A., Madaeni, S.S. and Mansourpanah, Y. (2010a), "Fabrication of polyethersulfone (PES) membranes with nano-porous surface using potassium perchlorate ($KClO_4$) as an additive in the casting solution", Desalination, 258(1-3), 79-86. https://doi.org/10.1016/j.desal.2010.03.042
  43. Rahimpour, A., Madaeni, S.S. and Mansourpanah, Y. (2010b), "Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media", J. Membr. Sci., 364(1-2), 380-388. https://doi.org/10.1016/j.memsci.2010.08.046
  44. Rahimpour, A., Jahanshahi, M., Khalili, S., Mollahosseini, A., Zirepour, A. and Rajaeian, B. (2012), "Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane", Desalination, 286, 99-107. https://doi.org/10.1016/j.desal.2011.10.039
  45. Ramesh, A., Lee, D.J., Wang, M.L., Hsu, J.P., Juang, R.S., Hwang, K.J., Liu, J.C. and Tseng, S.J. (2006), "Biofouling in membrane bioreactor", Sep. Sci. Technol., 41(7), 1345-1370. https://doi.org/10.1080/01496390600633782
  46. Sakinah, A.M.M., Ismail, A.F., Illias, R. and Hassan, O. (2007), "Fouling characteristics and autopsy of a PES ultrafiltration membrane in cyclodextrins separation", Desalination, 207(1-3), 227-242. https://doi.org/10.1016/j.desal.2006.08.007
  47. Shi, Q., Su, Y., Zhu, S., Li, C., Zhao, Y. and Jiang, Z. (2007), "A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane", J. Membr. Sci., 303(1-2), 204-212. https://doi.org/10.1016/j.memsci.2007.07.009
  48. Susanto, H. and Ulbricht, M. (2007), "Photo grafted thin polymer hydrogel layers on PES ultrafiltration membranes: characterization, stability, and influence on separation performance", Langmuir, 23(14), 7818-7830. https://doi.org/10.1021/la700579x
  49. Susanto, H. and Ulbricht, M. (2009), "Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives", J. Membr. Sci., 327(1-2), 125-135. https://doi.org/10.1016/j.memsci.2008.11.025
  50. Susanto, H., Balakrishnan, M. and Ulbricht, M. (2007), "Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes", J. Membr. Sci., 288(1-2), 157-167. https://doi.org/10.1016/j.memsci.2006.11.013
  51. Susanto, H., Arafat, H., Janssen, E.M.L. and Ulbricht, M. (2008), "Ultrafiltration of polysaccharide-protein mixtures: Elucidation of fouling mechanisms and fouling control by membrane surface modification", Sep. Purif. Technol., 63(3), 558-565. https://doi.org/10.1016/j.seppur.2008.06.017
  52. Susanto, H., Roihatin, A., Aryanti, N., Anggoro, D.D. and Ulbricht, M. (2012), "Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation", Mater. Sci. Eng., C, 32(7), 1759-1766. https://doi.org/10.1016/j.msec.2012.04.036
  53. Ulbricht, M., Riedel, M. and Marx, U. (1996), "Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules", J. Membr. Sci., 120(2), 239-259. https://doi.org/10.1016/0376-7388(96)00148-2
  54. Van der Bruggen, B. (2009), "Chemical modification of polyethersulfone nanofiltration membranes: A review", J. Appl. Polym. Sci.,114(1), 630-642. https://doi.org/10.1002/app.30578
  55. Wang, Y. and Shi, B. (2011), "Concentration of gelatin solution with polyethersulfone ultrafiltration membranes", Food Bioprod. Process., 89,163-169. https://doi.org/10.1016/j.fbp.2010.06.004
  56. Wang, T., Wang, Y.-Q., Su, Y.-L., Jiang, Z.Y. (2006a), "Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer", J. Membr. Sci., 280(1/2), 343-350. https://doi.org/10.1016/j.memsci.2006.01.038
  57. Wang, Y.-Q., Su, Y.-L., Sun, Q., Ma, X.-L. and Jiang, Z.-Y. (2006b), "Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone", J. Membr. Sci., 286(1-2), 228-236. https://doi.org/10.1016/j.memsci.2006.09.040
  58. Wavhal, D.S. and Fisher, E.R. (2002), "Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization", J. Membr. Sci., 209(1), 255-269. https://doi.org/10.1016/S0376-7388(02)00352-6
  59. Xiang, T., Yue, W.-W., Wang, R., Liang, S., Sun, S.-D. and Zhao, C.-S. (2013), "Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility", Colloids Surf., B, 110, 15-21. https://doi.org/10.1016/j.colsurfb.2013.04.034
  60. Yadav, K. (2009), "Diagnosis of the failure of ultrafiltration membranes used in the dairy industry", Ph.D. Dissertation; University of Canterbury, New Zealand.
  61. Zhang, J., Zhang, Y., Chen, Y., Du, L., Zhang, B., Zhang, H. and Wang, K. (2012), "Preparation and characterization of novel polyethersulfone hybrid ultrafiltration membranes bending with modified halloysite nanotubes loaded with silver nanoparticles", Ind. Eng. Chem. Res., 51(7), 3081-3090. https://doi.org/10.1021/ie202473u
  62. Zhao, W., Su, Y., Li, C., Shi, Q., Ning, X. and Jiang, Z. (2008), "Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent", J. Membr. Sci., 318(1-2), 405-412. https://doi.org/10.1016/j.memsci.2008.03.013
  63. Zhao, W., Huang, J., Fang, B., Nie, S., Yi, N., Su, B., Li, H. and Zhao, C. (2011a), "Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles", J. Membr. Sci., 369(1-2), 258-266. https://doi.org/10.1016/j.memsci.2010.11.065
  64. Zhao, X., Su, Y., Chen, W., Peng, J. and Jiang, Z. (2011b), "pH-responsive and fouling-release properties of PES ultrafiltration membranes modified by multi-functional block-like copolymers", J. Membr. Sci., 382(1-2), 222-230. https://doi.org/10.1016/j.memsci.2011.08.014
  65. Zhao, W., Mou, Q., Zhang, X., Shi, J., Sun, S. and Zhao, C. (2013), "Preparation and characterization of sulfonated polyethersulfone membranes by a facile approach", Eur. Polym. J., 49(3), 738-751. https://doi.org/10.1016/j.eurpolymj.2012.11.018
  66. Zhu, L.-P., Zhu, B.-K., Xu, L., Feng, Y.-X., Liu, F. and Xu, Y.-Y. (2007), "Corona-induced graft polymerization for surface modification of porous polyethersulfone membranes", Appl. Surf. Sci., 253(14), 6052-6059. https://doi.org/10.1016/j.apsusc.2007.01.004

Cited by

  1. Engineering nanocomposite membranes: Addressing current challenges and future opportunities vol.401, 2017, https://doi.org/10.1016/j.desal.2016.08.001
  2. Modification of polyethersulfone hollow fiber membrane with different polymeric additives vol.7, pp.4, 2016, https://doi.org/10.12989/mwt.2016.7.4.355
  3. Prospect and Challenges of Tight Ultrafiltration Membrane in Drinking Water Treatment vol.395, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/395/1/012012
  4. Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency vol.11, pp.1, 2015, https://doi.org/10.1007/s40820-019-0281-1
  5. Surface properties and interception behaviors of GO-TiO2 modified PVDF hollow fiber membrane vol.10, pp.2, 2019, https://doi.org/10.12989/mwt.2019.10.2.113
  6. Chitosan based modified polymers designed to enhance membrane permeation capability vol.509, pp.None, 2019, https://doi.org/10.1088/1757-899x/509/1/012122
  7. Improved Performance of Ultrafiltration Membranes after Surface Modification vol.56, pp.5, 2020, https://doi.org/10.3103/s1068375520050075
  8. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation vol.11, pp.2, 2015, https://doi.org/10.3390/membranes11020139