DOI QR코드

DOI QR Code

Ambient Occlusion Volume Rendering using Multi-Range Statistics

다중 영역 통계량을 이용한 환경-광 가림 볼륨 가시화

  • Nam, Jinhyun (Dept. of Information Systems Engineering, Hansung University) ;
  • Kye, Heewon (Dept. of Information Systems Engineering, Hansung University)
  • 남진현 (한성대학교 정보시스템 공학과) ;
  • 계희원 (한성대학교 정보시스템 공학과)
  • Received : 2015.06.20
  • Accepted : 2015.07.05
  • Published : 2015.07.14

Abstract

This study presents a volume rendering method using ambient occlusion which is one of global illumination methods. By considering the volume density distribution as normal distribution, ambient occlusion can be calculated at real-time speed regardless of modification of opacity transfer function. We calculate and store the averages and standard deviations of densities in a block centered at each voxel in pre-processing time. In rendering process, we determine the illumination value by estimating the nearby opacity. We generalized theoretical model and generated better quality images improving our previous research. In detail, various shapes of transfer function can be used due to the proposed equation model. Moreover, we introduced a multi-range model to give nearer objects more weight. As the result, more realistic volume rendering image can be generated at real-time speed by mixing local and ambient occlusion shading.

본 연구는 전역 조명 기법 중 하나인 환경-광 가림(ambient occlusion)을 이용한 볼륨 렌더링 방법을 설명한다. 볼륨 밀도 분포를 정규 분포로 가정하여, 환경-광 가림을 불투명도 전이함수의 변경과 무관하게 실시간 가시화할 수 있다. 전처리 과정에서 각 복셀 주변의 일정 크기 영역의 평균과 표준편차를 계산하여 두고, 가시화 단계에서 근방의 불투명도를 추정하여 밝기를 계산한다. 이 논문은 본 연구자들의 기존 연구를 발전시켜 이론적 모델을 일반화하고 출력 영상의 화질을 향상시킨다. 구체적으로 다양한 형태의 불투명도 전이함수를 사용할 수 있는 계산 모델을 제안한다. 그리고 영역의 크기를 다양하게 통계량을 생성하여 근처의 물체에 더 높은 가중치를 부여할 수 있도록 하였다. 최종적으로 환경-광 가림 효과와 지역 조명 효과를 혼합하여, 더 현실감 있는 화질의 볼륨 가시화 영상을 실시간으로 생성할 수 있다.

Keywords

Acknowledgement

Supported by : Hansung University

References

  1. M. Levoy, "Display of Surfaces from Volume Data," IEEE Computer Graphics and Applications, Vol. 8, pp.29-37. 1988. https://doi.org/10.1109/38.511
  2. P. SabelIa, "A Rendering Algorithm for Visualizing 3D Scalar Fields," ACM SIGGRAPH 1988 Proceedings of the 15th annual conference on Computer graphics and interactive techniques, New York, USA, pp.51-58. 1988
  3. C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl, "Interactive Volume Rendering on Standard PC Graphics Hardware Using Multi-Textures and Multi-Stage Rasterization," ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware 2000, pp.109-118, 2000.
  4. J. Kruger and R. Westermann, "Acceleration Techniques for GPU-based Volume Rendering," Visualization, IEEE, VIS2003, Ortober, 2003.
  5. K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf, "Real-Time Volume Graphics," Wellesley, Massachusetts, 2006.
  6. N. Max, "Optical Models for Direct Volume Rendering," IEEE Transactions on Visualization and Computer Graphics, Vol. 1, No. 2, pp.99-108, Jun, 1995. https://doi.org/10.1109/2945.468400
  7. L. Bavoil, M. Sainz, and R. Dimitrov, "Image-Space Horizon-Based Ambient Occlusion," ACM SIGGRAPH 2008 talks, No.22, New York, USA, 2008.
  8. J. Kontkanen and S. Laine, "Ambient Occlusion Fields," ACM SIGGRAPH 2005 Symposium, Interactive 3D Graphics and Games, 2005.
  9. T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann, and K. Hinrichs, "Interactive Volume Rendering with Dynamic Ambient Occlusion and Color Bleeding," Computer Graphics Forum(Eurographics 2008), Vol. 27, No. 2, pp.567-576, 2008.
  10. M. Bunnell, "Dynamic Ambient Occlusion and Indirect Lighting," GPU Gems 2, M.Pharr, Ed., Addison Wesley, pp.223-233, 2005.
  11. J. Nam and H. Kye, "Fast Ambient Occlusion Volume Rendering using Local Statistics," Journal of Korea Multimedia Society, Vol. 18, No. 2, pp.158-167, February, 2015. https://doi.org/10.9717/kmms.2015.18.2.158
  12. OpenGL, https://www.opengl.org/, (accessed Jun., 20, 2015)
  13. CUDA, https://developer.nvidia.com/cuda-zone, (accessed Jun., 20, 2015)
  14. Y. Jung, "CUDA Parallel Programming," Freelec, Seoul, Korea, 2011.
  15. F. Hernell, P. Ljung, and A. Tnnerman, "Local Ambient Occlusion in Direct Volume Rendering," IEEE Transactions on Visualization and Computer Graphics, Vol. 16, No. 4, pp.548-559, 2010. https://doi.org/10.1109/TVCG.2009.45
  16. L. Marsalek, A. Hauber, and P. Slusalled, "High-Speed Volume Ray Casting With CUDA," Interactive Ray Triacing, RT 2008. IEEE Symposium, pp.9-10, 2008.
  17. M. Levoy, "Efficient Ray Tracing of Volume Data," ACM Transactions on Graphics, Vol. 9, No. 3, pp.245-261, 1990 https://doi.org/10.1145/78964.78965
  18. W. Li, K. Mueller, and A. Kaufman, "Empty Space Skipping and Occlusion Clipping for Texture-Based Volume Rendering," In Proceedings of IEEE Visualization Conference (2003), pp.317-324, 2003.