DOI QR코드

DOI QR Code

Shadow Removal in Front Projection System using a Depth Camera

깊이 카메라를 이용한 전방 프로젝션 환경에서 그림자 제거

  • Received : 2015.06.20
  • Accepted : 2015.07.05
  • Published : 2015.07.14

Abstract

One way to create a visually immersive environment is to utilize a front projection system. Especially, when enough space is not available behind the screen, it becomes difficult to install a back projection system, making the front projection an appropriate choice. A drawback associated with the front projection is, however, the interference of shadow. The shadow can be cast on the screen when the user is located between the screen and the projector. This shadow can negatively affect the user experience and reduce the sense of immersion by removing important information. There have been various attempts to eliminating shadows cast on the screen by using multiple projectors that compensate for each other with missing information. There is trade-off between calculataion time and desired accuracy in this mutual compensation. Accurate estimation of the shadow usually requires heavy computation while simple approaches suffer from inclusion of non-shadow regions in the result. We propose a novel approach to removing shadows created in the front projection system using the skeleton data obtained from a depth camera. The skeleton data helps accurately extract the shape of the shadow that the user cast without requiring much computation. Our method also utilizes a distance field to remove the afterimage of shadow that may occur when the user moves. We verify the effectiveness of our system by performing various experiments in an interactive environment created by a front projection system.

최근 각광받고 있는 몰입감 있는 콘텐츠 소비 공간을 효율적으로 구축하기 위해서 전방 프로젝션 시스템이 많이 사용되고 있다. 하지만 전방 프로젝션 환경에서는 프로젝터와 투사면 사이에 사용자가 위치할 경우 그림자가 투사면 위에 나타나 중요한 정보를 가리거나 사용자의 몰입감을 저해한다. 이러한 이유로 전방 프로젝션 환경에서 그림자를 지우고자 하는 시도가 이전부터 있었다. 전방 프로젝션 환경에서 그림자를 지우는 방법은 생성된 그림자 영역을 다른 각도의 프로젝터를 이용하여 빛을 보정해주는 방식을 사용한다. 이 과정에서 그림자 영역을유추할때 정확도만을 추구하는 방법은 연산시간이 너무 오래 걸리게 되고, 단순하게 유추하는 방법은 불필요한 영역까지도 그림자 영역으로 유추하는단점이 존재한다. 따라서 본 논문에서는 깊이 카메라에서 획득할수 있는 스켈레톤 정보를 이용하여 계산량은 적지만 사용자가 생성해내는 그림자에 가까운 모양을유추하여 효과적으로 그림자를 지워주는 방법을 제안한다. 또한 사용자가 움직일때 생성되는 그림자의 잔상이 남지 않도록 디스턴스 필드(distance field)를 이용한 마스크 생성 방법을 제안한다.

Keywords

References

  1. S. S. Snibbe and H. S. Raffle, "Social immersive media: pursuing best practices for multi-user interactive camera/ projector exhibits," in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2009, pp. 1447-1456.
  2. J. Summet, G. D. Abowd, G. M. Corso, and J. M. Rehg, "Virtual rear projection: Do shadows matter?" in CHI'05 Extended Abstracts on Human Factors in Computing Systems. ACM, 2005, pp. 1997-2000.
  3. R. S. T.-J. Cham and G. Sukthankar, "Dynamic shadow elimination for multi-projector displays," in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2001.
  4. C. Jaynes, S. Webb, R. M. Steele, M. Brown, and W. B. Seales, "Dynamic shadow removal from front projection displays," in Proceedings of the conference on Visualization'01. IEEE Computer Society, 2001, pp. 175-182.
  5. T.-J. Cham, J. M. Rehg, R. Sukthankar, and G. Sukthankar, "Shadow elimination and occluder light suppression for multi-projector displays," in Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 2. IEEE, 2003, pp. II-513.
  6. C. Jaynes, S. Webb, and R. M. Steele, "Camera-based detection and removal of shadows from interactive multiprojector displays," Visualization and Computer Graphics, IEEE Transactions on, vol. 10, no. 3, pp. 290-301, 2004. https://doi.org/10.1109/TVCG.2004.1272728
  7. Y. Sugaya, I. Miyagawa, and H. Koike, "Contrasting shadow for occluder light suppression from one-shot image," in Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on. IEEE, 2010, pp. 96-103.
  8. D. S. Tan and R. Pausch, "Pre-emptive shadows: Eliminating the blinding light from projectors," in CHI'02 extended abstracts on Human factors in computing systems. ACM, 2002, pp. 682-683.
  9. M. Flagg, J. Summet, and J. M. Rehg, "Improving the speed of virtual rear projection: A gpu-centric architecture," in Computer Vision and Pattern Recognition-Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on. IEEE, 2005, pp. 105-105.
  10. J. Summet, M. Flagg, T.-J. Cham, J. M. Rehg, and R. Sukthankar, "Shadow elimination and blinding light suppression for interactive projected displays," Visualization and Computer Graphics, IEEE Transactions on, vol. 13, no. 3, pp. 508-517, 2007. https://doi.org/10.1109/TVCG.2007.1007
  11. S. Audet and J. R. Cooperstock, "Shadow removal in front projection environments using object tracking," in Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on. IEEE, 2007, pp. 1-8.
  12. D. Iwai, M. Nagase, and K. Sato, "Shadow removal of projected imagery by occluder shape measurement in a multiple overlapping projection system," Virtual Reality, vol. 18, no. 4, pp. 245-254, 2014. https://doi.org/10.1007/s10055-014-0250-4
  13. Z. Zhang, "A flexible new technique for camera calibration," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 11, pp. 1330-1334, 2000. https://doi.org/10.1109/34.888718
  14. D. Moreno and G. Taubin, "Simple, accurate, and robust projector-camera calibration," in 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012 Second International Conference on. IEEE, 2012, pp. 464-471.
  15. D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis, "Scape: shape completion and animation of people," in ACM Transactions on Graphics (TOG), vol. 24, no. 3. ACM, 2005, pp. 408-416. https://doi.org/10.1145/1073204.1073207
  16. N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-P. Seidel, "A statistical model of human pose and body shape," in Computer Graphics Forum, vol. 28, no. 2. Wiley Online Library, 2009, pp. 337-346. https://doi.org/10.1111/j.1467-8659.2009.01373.x