DOI QR코드

DOI QR Code

원자층 증착 기술을 이용한 TiO2 활성층 기반 TFT 연구

Study on the Thin-film Transistors Based on TiO2 Active-channel Using Atomic Layer Deposition Technique

  • Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
  • 투고 : 2015.06.02
  • 심사 : 2015.06.24
  • 발행 : 2015.07.01

초록

In this paper, $TiO_2$ based thin-film transistors (TFTs) were fabricated using by an atomic layer deposition with high aspect ratio and excellent step coverage. $TiO_2$ semiconducting layer was deposited showing a rutile phase through the rapid thermal annealing process, and exhibited TFT characteristics with a $200{\mu}m$ channel length of low-leakage currents (none of current flow during off-state), stable threshold voltages (-10 V ~ 0 V), and a much higher on/off current ratio (<$10^5$), respectively.

키워드

참고문헌

  1. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). [DOI: http://dx.doi.org/10.1126/science.1083212]
  2. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: http://dx.doi.org/10.1038/nature03090]
  3. C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.85.1012]
  4. J. H. Na, M. Kitamura, and Y. Arakawa, Appl. Phys. Lett., 93, 063501 (2008). [DOI: http://dx.doi.org/10.1063/1.2969780]
  5. W. B Jackson, R. L. Hoffman, and G. S. Herman, Appl. Phys. Lett., 87, 193503 (2005). [DOI: http://dx.doi.org/10.1063/1.2120895]
  6. B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, J. Am. Chem. Soc., 129, 2750 (2007). [DOI: http://dx.doi.org/10.1021/ja068876e]
  7. Y. S. Rim, H. S. Lim, and H. J. Kim, Appl. Mater. Interfaces, 5, 3565 (2013). [DOI: http://dx.doi.org/10.1021/am302722h]
  8. M. Katayama, S. Ikesaka, J. Kuwano, Y. Yamamoto, H. Koinuma, and Y. Matsumoto, Appl. Phys., 89, 242103 (2006).
  9. C. G. Choi, S. J. Seo, and B. S. Bae, Electrochem. Solid-State Lett., 11, H7 (2008). [DOI: http://dx.doi.org/10.1149/1.2800562]
  10. P. C. Yao, J. L. Chiang, and M. C. Lee, Solid State Sciences, 28, 47 (2014). [DOI: http://dx.doi.org/10.1016/j.solidstatesciences.2013.12.011]
  11. C. Y. Koo, K.K.K. Song, T. H. Jun, D. J. Kim, Y. M. Jeong, S. H. Kim, J. W. Ha, and J. H. Moon, Electrochem. Solid-State Lett., 157, J111 (2010).
  12. P. H. Wöbkenberg, T. Ishwara, J. Nelson, D.D.C. Bradley, S. A. Haque, and T. D. Anthopoulos, Appl. Phys. Lett., 96, 082116 (2010). [DOI: http://dx.doi.org/10.1063/1.3330944]
  13. Q. Xie, Y. L. Jiang, C. Detavernier, D. Deduytsche, and R.L.V. Meirhaeghe, J. Appl. Phys., 102, 083521 (2007). [DOI: http://dx.doi.org/10.1063/1.2798384]
  14. J. Y. Kim, Y. J. Choi, H. H. Park, S. Golledge, and D. C. Johnson, JVST A, 28, 1111 (2010).
  15. C. F. Zhu, W. K. Fong, B. H. Leung, C. C. Cheng, and S. Charles, IEEE Electron Device, 48, 1225 (2001). [DOI: http://dx.doi.org/10.1109/16.925252]
  16. Z. Y. Lu, C. J. Nicklaw, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, Phys. Rev. Lett., 89, 285505 (2002). [DOI: http://dx.doi.org/10.1103/PhysRevLett.89.285505]
  17. H. S. Witham and P. M. Lenahan, Appl. Phys. Lett., 51, 1007 (1987). [DOI: http://dx.doi.org/10.1063/1.98813]
  18. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron., 47, 297 (2003). [DOI: http://dx.doi.org/10.1016/S0038-1101(02)00210-1]