Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Barbosa, J.M.O., Park, J. and Kausel, E. (2012), "Perfectly matched layers in the thin layer method", Comput. Meth. Appl. Mech. Eng., 217, 262-274.
- Dunkin, J.W. (1965), "Computation of modal solutions in layered, elastic media at high frequencies", Bull. Seismol. Soc. Am., 55(2), 335-358.
- Du, X. and Wang, J. (2000), "An explicit difference formulation of dynamic response calculation of elastic structure with damping", Eng. Mech., 17, 37-43. (in Chinese)
- Gilbert, F. and Backus, G.E. (1966), "Propagator matrices in elastic wave and vibration problem", Geophys., 31(2), 326-332. https://doi.org/10.1190/1.1439771
- Haskell, N.A. (1953), "The dispersion of surface waves on multilayered media", Bull. Seismol. Soc. Am., 43(1), 17-34.
- Hashash, Y.M.A., Phillips, C. and Groholski, D.R. (2010), "Recent advances in non-linear site response analysis", Proceedings of the Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California.
- Jones, S. and Hunt, H. (2011), "Effect of inclined soil layers on surface vibration from underground railways using the thin-layer method", J. Eng. Mech., ASCE, 137(12), 887-900. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000292
- Knopoff, L. (1964), "A matrix method for elastic wave problems", Bull. Seismol. Soc. Am., 54(1), 431-438.
- Kausel, E. and Roesset, J.M. (1981), "Stiffness matrices for layered soils", Bull. Seismol. Soc. Am., 71(6), 1743-1761.
- Kausel, E. and Peek, R. (1982), "Dynamic loads in the interior of a layered stratum: an explicit solution", Bull. Seismol. Soc. Am., 72(5), 1459-1481.
- Kausel, E. (1994), "Thin-layer method: formulation in the time domain", Int. J. Numer. Meth. Eng., 37(6), 927-941. https://doi.org/10.1002/nme.1620370604
- Kausel, E. (2000), "The Thin-layer method in seismology and earthquake engineering", Wave Motion in Earthquake Engineering, WIT Press, UK.
- Kausel, E. (2004), "Accurate stresses in the thin-layer method", Int. J. Numer. Meth. Eng., 61(3), 360-379. https://doi.org/10.1002/nme.1067
- Kausel, E. (2006), Fundamental Solutions in Elastodynamics, Cambridge University Press, New York, NY, USA.
- Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., ASCE, 95(4), 869-877.
- Lysmer, J. (1970), "Lumped mass method for Rayleigh waves", Bull. Seismol. Soc. Am., 60(1), 89-104.
- Lysmer, J. and Waas, G. (1972), "Shear waves in plane infinite structures", J. Eng. Mech. Div., ASCE, 18(1), 85-105.
- Liao, H., Chen, Q. and Xu, Z. (1994), "Nonlinear responses of layered soils to obliquely incident SH waves", J. Tongji Univ., 22(4), 517-522. (in Chinese)
- Liu, J. and Wang, Y. (2006), "A 1-D time-domain method for 2-D wave motion in elastic layered half-space by antiplane wave oblique incidence", Chinese J. Theo. Appl. Mech., 38(2), 219-225. (in Chinese)
- Liu, J. and Wang, Y. (2007), "A 1D time-domain method for in-plane wave motions in a layered half-space", Acta Mechanica Sinica, 23(6), 673-680. https://doi.org/10.1007/s10409-007-0114-1
- Mayoral, J.M., Flores, F.A. and Romo, M.P. (2011), "Seismic response evaluation of an urban overpass", Earthq. Eng. Struct. Dyn., 40(8), 827-845. https://doi.org/10.1002/eqe.1062
- Park, J. and Kausel, E. (2004), "Numerical dispersion in the thin-layer method", Comput. Struct., 82(7), 607-625. https://doi.org/10.1016/j.compstruc.2003.12.002
- Rota, M., Lai, C.G. and Strobbia, C.L. (2011), "Stochastic 1D site response analysis at a site in central Italy", Soil Dyn. Earthq. Eng., 31(4), 626-639. https://doi.org/10.1016/j.soildyn.2010.11.009
- Seale, S.H. and Kausel, E. (1984), "Dynamic loads in layered halfspaces", Proceedings of the Fifth Engineering Mechanics Division Specialty Conference, Laramie, Wyoming.
- Seale, S.H. and Kausel, E. (1989), "Point loads in cross-anisotropic layered halfspaces", J. Eng. Mech., ASCE, 115(3), 509-542. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:3(509)
- Thomson, W.T. (1950), "Transmission of elastic waves through a stratified solid medium", J. Appl. Phys., 21(1), 89-93. https://doi.org/10.1063/1.1699629
- Takano, S., Yasui, Y., Takeda, T. and Miyamoto, A. (1988), "The new method to calculate the response of layered half-space subjected to obliquely incident body wave", Proceedings of the Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan.
- Watson, T.H. (1970), "A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space", Bull. Seismol. Soc. Am., 60(1), 161-166.
- Wolf, J.P. and Obernhuber, P. (1982), "Free-field response from inclined SH-waves and Love-waves", Earthq. Eng. Struct. Dyn., 10(6), 823-845. https://doi.org/10.1002/eqe.4290100607
- Wolf, J.P. and Obernhuber, P. (1982), "Free-field response from inclined SV- and P-waves and Rayleighwaves", Earthq. Eng. Struct. Dyn., 10(6), 847-869. https://doi.org/10.1002/eqe.4290100608
- Wolf, J.P. and Obernhuber, P. (1983), "In-plane free-field response of actual sites", Earthq. Eng. Struct. Dyn., 11(1), 121-134. https://doi.org/10.1002/eqe.4290110110
- Wolf, J.P. (1985), Dynamic Soil-Structures Interaction, Prentice-Hall.
- Wang, J., Zhang, C. and Du X. (2008), "An explicit integration scheme for solving dynamic problems of solid and porous media", J. Earthq. Eng., 12(2), 293-311. https://doi.org/10.1080/13632460701364528
- Zhao, M., Du, X., Liu, J. and Liu, H. (2011), "Explicit finite element artificial boundary scheme for transient scalar waves in two-dimensional unbounded waveguide", Int. J. Numer. Meth. Eng., 87(11), 1074-1104. https://doi.org/10.1002/nme.3147
Cited by
- The topographic effect of ground motion based on Spectral Element Method vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.411
- Analytical Solution for Circular Tunnel under Obliquely Incident P Waves considering Different Contact Conditions vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/1946184