References
- AISC-ASD (1989), Manual of Steel Construction-Allowable Stress Design, American Institute of Steel Construction, Chicago, IL, USA.
- Albrecht, P. and Lenwari, A. (2008), "Design of prestressing tendons for strengthening steel truss bridges", J. Bridge Eng., 13(5), 449-454. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:5(449)
- Arda, T.S. and Yardimci, N. (2000), Prestressing in Steel Structure, Birsen Publishing Company, Istanbul, Turkey.
- Aydin, Z. and Ayvaz, Y. (2010), "Optimum topology and shape design of prestressed concrete bridge girders using a genetic algorithm", Struct. Multidisc. Optim., 41(1), 151-162. https://doi.org/10.1007/s00158-009-0404-2
- Bathe, K.J. (1996), Finite element procedures, Prentice-Hall, Englewood Cliffs, NJ.
- Belletti, B. and Gasperi, A. (2010), "Behavior of prestressed steel beams", J. Struct. Eng., 136(9), 1131-1139. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000208
- Cheng, J. (2010), "Optimum design of steel truss arch bridges using a hybrid genetic algorithm", J. Constr. Steel Res., 66(8-9), 1011-1017. https://doi.org/10.1016/j.jcsr.2010.03.007
- Cakir, E. (2011), "Minimum-weighted design of prestressed steel truss beams", Msc. Thesis; Namik Kemal University, Tekirdag, Turkey.
- Dede, T., Bekiroglu, S. and Ayvaz, Y. (2011), "Weight minimization of trusses with genetic algorithm", Appl. Soft Comput., 11(2), 2565-2575. https://doi.org/10.1016/j.asoc.2010.10.006
- Dong, S. and Yuan, X. (2007), "Pretension process analysis of prestressed space grid structures", J. Constr. Steel Res., 63(3), 406-411. https://doi.org/10.1016/j.jcsr.2006.04.006
- Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison-esley Publishing Company, Inc., New York, NY, USA.
- Guo, H.Y. and Li, Z.L. (2011), "Structural topology optimization of high-voltage transmission tower with discrete variables", Struct. Multidisc. Optim., 43(6), 851-861. https://doi.org/10.1007/s00158-010-0561-3
- Han, K.B. and Park, S.K. (2005), "Parametric study of truss bridges by the post-tensioning method", Can. J. Civ. Eng., 32(2), 420-429. https://doi.org/10.1139/l04-096
- Hanaor, A. (1988), "Prestressed pin-jointed structures-flexibility analysis and prestress design", Comp. Struct., 28(6), 757-769. https://doi.org/10.1016/0045-7949(88)90416-6
- Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, USA.
- Kaveh, A. and Kalatjari, V. (2003), "Topology optimization of trusses using genetic algorithm, force method and graph theory", Int. J. Numer. Method. Eng., 58(5), 771-791. https://doi.org/10.1002/nme.800
- Kirsch, U. (1972), "Optimum design of prestressed beams", Comp. Struct., 2(4), 573-583. https://doi.org/10.1016/0045-7949(72)90009-0
- Kociecki, M. and Adeli, H. (2013), "Two-phase genetic algorithm for size optimization of free-form steel space-frame roof structures", J. Constr. Steel Res., 90, 283-296. https://doi.org/10.1016/j.jcsr.2013.07.027
- Levy, R. and Hanaor, A. (1992), "Optimal design of prestressed trusses", Comp. Struct., 43(4), 741-744. https://doi.org/10.1016/0045-7949(92)90517-4
- Ozturk, A.Z. (1979), "Design and construction principles of prestressed steel structures", Ph.D. Thesis; Istanbul State Engineering and Architecture Academy, Istanbul, Turkey.
- Park, S., Kim, T., Kim, K. and Hong, S.N. (2010), "Flexural behavior of steel I-beam prestressed with externally unbonded tendons", J. Constr. Steel Res. 66(1), 125-132. https://doi.org/10.1016/j.jcsr.2009.07.013
- Rahami, H., Kaveh, A. and Gholipour, Y. (2008), "Sizing, geometry and topology optimization of trusses via force method and genetic algorithm", Eng. Struct., 30(9), 2360-2369. https://doi.org/10.1016/j.engstruct.2008.01.012
- Rajan, S.D. (1995), "Sizing, shapes and topology design optimization of trusses using genetic algorithm", J. Struct. Eng., 121(10), 1480-1486. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1480)
- Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithm", J. Struct. Eng., 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
- Rajeev, S. and Krishnamoorthy, C.S. (1997), "Genetic algorithms-based methodologies for design optimization of trusses", J. Struct. Eng., 123(3), 350-358. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(350)
- Ronghe, G.N. and Gupta, L.M. (1999), "Study of tendon profile on the analysis and design of prestressed steel beams", Proceedings of the 2nd International Conference on Advances in Steel Structures, Hong Kong, China, December.
- TS3233 (1979), Building code requirements for prestressed concrete; Turkish Standard Institution, Ankara, Turkey.
- You, Z. (1997), "Displacement control of prestressed structures", Comput. Methods. Appl. Mech. Eng., 144(1-2), 51-59. https://doi.org/10.1016/S0045-7825(96)01164-4
Cited by
- Weight minimization of truss structures with sizing and layout variables using integrated particle swarm optimizer vol.23, pp.8, 2017, https://doi.org/10.3846/13923730.2017.1348982
- Testing specimen effect on shrinkage of lightweight concrete vol.171, pp.3, 2018, https://doi.org/10.1680/jstbu.16.00125
- Optimization of long span portal frames using spatially distributed surrogates vol.24, pp.2, 2015, https://doi.org/10.12989/scs.2017.24.2.227
- Size effect and age factor in mechanical properties of BST Light Weight Concrete vol.177, pp.None, 2018, https://doi.org/10.1016/j.conbuildmat.2018.05.115
- Parametric optimization of pre-stressed steel arch-shaped trusses with ties vol.451, pp.None, 2015, https://doi.org/10.1088/1757-899x/451/1/012060
- Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall vol.20, pp.6, 2015, https://doi.org/10.12989/gae.2020.20.6.527