참고문헌
- Agamirov, V.L. (1990), Dynamic Problems of Nonlinear Shells Theory, Nauka, Moscow, Russia. [In Russian]
- Ajdari, M.A.B., Jalili, S., Jafari, M., Zamani, J. and Shariyat, M. (2012), "The analytical solution of the buckling of composite truncated conical shells under combined external pressure and axial compression", J. Mech. Sci. Tech., 26(9), 2783-2791. https://doi.org/10.1007/s12206-012-0727-6
- Awrejcewicz, J. and Krysko, V.A. (2008), "Theory of non-homogeneous shells", Und. Com. Sys., 15-40.
- Babich, D.V. and Khoroshun, L.P. (2001), "Stability and natural vibrations of shells with variable geometric and mechanical parameters", Int. Appl. Mech., 37(7), 837-869. https://doi.org/10.1023/A:1012503024244
- Baruch, M., Harari, O. and Singer, J. (1967), "Influence of in-plane boundary conditions on the stability of conical shells under hydrostatic pressure", Isr. J. Tech., 5(1), 12-24.
- Blachut, J. (2011), "On elastic-plastic buckling of cones", Thin-Wall. Struct., 49(1), 45-52. https://doi.org/10.1016/j.tws.2010.08.005
- Blachut, J. (2012), "Interactive plastic buckling of cones subjected to axial compression and external pressure", Ocean. Eng., 48, 10-16. https://doi.org/10.1016/j.oceaneng.2012.03.018
- Grigorenko, Y.M. and Grigorenko, A.Y. (2013), "Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review)", Int. Appl. Mech., 49(2), 123-193. https://doi.org/10.1007/s10778-013-0558-x
- Ifayefunmi, O. and Blachut, J. (2013), "Instabilities in imperfect thick cones subjected to axial compression and external pressure", Mar. Struct., 33, 297-307. https://doi.org/10.1016/j.marstruc.2013.06.004
- Karpov, N.I. and Karpova, O.A. (1981), "Stability of conical shell under combined load", Strength. Mater., 13(11), 1359-1364. https://doi.org/10.1007/BF00772386
- Khazaeinejad, P., Najafizadeh, M.M., Jenabi, J. and Isvandzibaei, M.R. (2010), "On the buckling of functionally graded cylindrical shells under combined external pressure and axial compression", J. Pres. Ves. Tech., 132(6), 064501. https://doi.org/10.1115/1.4001659
- Kim, J.H. and Paulino, G.H. (2002), "Isoparametric graded finite elements for non-homogeneous isotropic and orthotropic materials", J. Appl. Mech., 69(4), 502-513. https://doi.org/10.1115/1.1467094
- Lal, R. and Kumar, Y. (2012), "Characteristic orthogonal polynomials in the study of transverse vibrations of nonhomogeneous rectangular orthotropic plates of bilinearly varying thickness", Meccanica, 47(1), 175-193. https://doi.org/10.1007/s11012-011-9430-4
- Mohammadzadeh, R., Najafizadeh, M.M. and Nejati, M. (2013), "Buckling of 2D-FG cylindrical shells under combined external pressure and axial compression", Adv. Appl. Math. Mech., 5(3), 391-406. https://doi.org/10.4208/aamm.2012.m39
- Naderi, A.A., Rahimi, G.H. and Arefi, M. (2014), "Influence of fiber paths on buckling load of tailored conical shells", Steel Compos. Struct., Int. J., 16(4), 375-387. https://doi.org/10.12989/scs.2014.16.4.375
- Ootao, Y. and Tanigawa, Y. (2007), "Three-dimensional solution for transient thermal stresses of an orthotropic functionally graded rectangular plate", Compos. Struct., 80(1), 10-20. https://doi.org/10.1016/j.compstruct.2006.02.028
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, Theory and Analysis, (Second Ed.), CRC Press, New York, NY, USA.
- Sachenkov, A.V. (1964), On the Stability of Conical Shell Under Combined Load. Theory of Plates and Shells, Kazan State University, Kazan, Russia. [In Russian]
- Shadmehri, F., Hoa, S.V. and Hojjati, M. (2012), "Buckling of conical composite shells", Compos. Struct., 94(2), 787-792. https://doi.org/10.1016/j.compstruct.2011.09.016
- Shen, H.S. (2001), "Postbuckling of shear deformable cross-ply laminated cylindrical shells under combined external pressure and axial compression", Int. J. Mech. Sci., 43(11), 2493-2523. https://doi.org/10.1016/S0020-7403(01)00058-3
- Sofiyev, A.H. (2010), "The buckling of FGM truncated conical shells subjected to combined axial tension and hydrostatic pressure", Compos. Struct., 92(2), 488-498. https://doi.org/10.1016/j.compstruct.2009.08.033
- Sofiyev, A.H. (2014), "On the buckling of composite conical shells resting on the Winkler-Pasternak elastic foundations under combined axial compression and external pressure", Compos. Struct., 113, 208-215. https://doi.org/10.1016/j.compstruct.2014.03.023
- Sofiyev, A.H., Omurtag, M.H. and Schnack, E. (2009), "The vibration and stability of orthotropic conical shells with non-homogeneous material properties under a hydrostatic pressure", J. Sound Vib., 319(3-5), 963-983. https://doi.org/10.1016/j.jsv.2008.06.033
- Sofiyev, A.H., Alizada, A.N., Akin, O., Valiyev, A., Avcar, M. and Adiguzel, S. (2012), "On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations", Acta Mech., 223(1), 189-204. https://doi.org/10.1007/s00707-011-0548-1
- Struk, R. (1984), "Non-linear stability problem of an open conical sandwich shell under external pressure and compression", Int. J. Non. Lin. Mech., 19(3), 217-233. https://doi.org/10.1016/0020-7462(84)90009-X
- Tani, J. (1985), "Buckling of truncated conical shells under combined axial load, pressure, and heating", J. Appl. Mech., 52(2), 402-408. https://doi.org/10.1115/1.3169061
- Van-Dung, D, Hoa, L.K., Nga, N.T. and Anh, L.T.N. (2013), "Instability of eccentrically stiffened functionally graded truncated conical shells under mechanical loads", Compos. Struct., 106, 104-113. https://doi.org/10.1016/j.compstruct.2013.05.050
- Weingarten, V.I. and Seide, P. (1965), "Elastic stability of thin-walled cylindrical and conical shells under combined external pressure and axial compression", AIAA Journal, 3(5), 913-920. https://doi.org/10.2514/3.3015
- Wu, C.P., Chen, Y.C. and Peng, S.T. (2013), "Buckling analysis of functionally graded material circular hollow cylinders under combined axial compression and external pressure", Thin-Wall. Struct., 69, 54-66. https://doi.org/10.1016/j.tws.2013.04.002
피인용 문헌
- Free vibration analysis of composite cylindrical shells with non-uniform thickness walls vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.1087
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
- A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
- Collapse of steel cantilever roof of tribune induced by snow loads vol.23, pp.3, 2015, https://doi.org/10.12989/scs.2017.23.3.273
- Ant colony optimization for dynamic stability of laminated composite plates vol.25, pp.1, 2015, https://doi.org/10.12989/scs.2017.25.1.105
- A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2015, https://doi.org/10.12989/sem.2018.67.4.369
- Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams vol.6, pp.4, 2015, https://doi.org/10.12989/anr.2018.6.4.377
- Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load vol.31, pp.3, 2019, https://doi.org/10.12989/scs.2019.31.3.243