DOI QR코드

DOI QR Code

유전체층 위의 완전도체띠 격자구조에 의한 TE 산란에 관한 연구

A Study on TE Scattering by a Conductive Strip Grating Over a Dielectric Layer

  • 윤의중 (가천대학교 의용생체공학과)
  • 투고 : 2015.02.27
  • 심사 : 2015.06.11
  • 발행 : 2015.06.30

초록

본 논문에서는 유전체층 위의 완전도체띠 격자구조에 의한 TE(transverse electric)산란 문제를 전자파 수치해석 방법으로 알려진 FGMM(fourier-Galerkin moment method) 및 PMM(point matching method)을 이용하여 해석하였다. 산란전자계는 Floquet 모드함수의 급수로 전개하였고, 경계조건은 미지의 계수를 구하기 위하여 적용하였으며, 완전도체의 경계조건은 접선성분의 전계와 스트립위에 유도되는 전류와의 관계를 이용하였다. 도체띠의 폭과 주기, 유전층의 비유전율과 두께 및 입사각에 대해 정규화된 기하광학적 반사 및 투과전력을 계산하였다. 전반적으로 유전체층의 비유전율이 증가할수록 기하광학적 정규화된 반사전력이 증가하였다. 본 논문의 정확도를 검증하기 위하여 FGMM의 수치결과들은 PMM을 이용한 수치계산 결과들과 비교하여 매우 잘 일치하였다.

In this paper, the solutions of TE(transverse electric) scattering problems by a condutive strip grating over a dielectric layer are analyzed by using the FGMM(fourier galerkin moment method) and PMM(point matching method) known as a numerical method of electromagnetic fileld. The scattered electromagnetic fields are expanded in a series of floguet mode functions, the boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is used for the relationship between the tangential electric field and the induced surface current density on the strip. The numerical results for the reflected and transmitted power of zeroth mode analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of dielectric layer, and incident angles. Generally, according to the relative permittivity of dielectric layer increased, also the normalized reflected power of zeroth mode increased. To examine the accruacy of this paper, the numerical results of FGMM shown in good agreement compared to those of PMM.

키워드

참고문헌

  1. M. Ando and K. Takei, "Reflection and transmission coefficient of a thin strip grating for antenna application," IEEE Transactions on Antennas and Propagation, Vol.AP-35, No.4, pp.367-371, Mar. 1987. DOI: http://dx.doi.org/10.1109/TAP.1987.1144112
  2. J. H. Richmond, "On the edge mode in the theory of TM scattering by a strip or strip grating," IEEE Transactions on Antennas and Propagation, Vol. AP-28, pp. 883-887, Sept. 1980. DOI: http://dx.doi.org/10.1109/TAP.1980.1142427
  3. R. C. Hall and R. Mittra, "Scattering from a periodic array of resistive strips," IEEE Transactions on Antennas and Propagation, Vol. AP-33, pp. 1009-1011, Sept. 1985. DOI: http://dx.doi.org/10.1109/TAP.1985.1143706
  4. R. C. Hall, R. Mittra, and K. M. Mitzner, "Analysis of multilayered periodic structure using generalized scattering matrix theory," IEEE Transactions on Antennas and Propagation, Vol. AP-36, pp. 511-517, Sept. 1988. DOI: http://dx.doi.org/10.1109/8.1140
  5. H. A. Kalhor, "Electromagnetic scattering by a dielectric slab loaded with a periodic array of strips over a grounded plane," IEEE Transactions on Antennas and Propagation, Vol. AP-36, No. 1, pp. 147-151, Jan. 1988. DOI: http://dx.doi.org/10.1109/8.1088
  6. Y. K. Cho, et al, "Analysis of electromagnetic sacttering by periodic strips on grounded dielectric slab," IEEE Transactions on Antennas and Propagation, Symposium Digest, Vol 1, pp. 511-517, 1995.
  7. Y. S. Choi and S. I. Yang, "Analysis of the electromagnetic scattering of resistive strip grating with uniform resistivity on a grounded dielectric layer. - H-polarization case," Journal of Korean Institute of Communications and Information Sciences, Vol. 31, No. 3A, pp. 321-327, Mar. 2006.
  8. U. J. Yoon, "Solution of TE scattering by a perfectly conducting strip grating over the grounded two dielectric layers applying fourier-galerkin moment method," Journal of Korea Navigation Institute, Vol. 16, No. 4, pp. 635-640, Aug. 2012. DOI: http://dx.doi.org/10.12673/jkoni.2012.16.4.635
  9. S. H. Lee and Y. K. Cho," Solution for TE scattering by a periodic strip grating with a dielectric slab," Journal of the Institute of Electronics and Information Engineers, Vol. 27, No. 11, pp. 20-24, Nov. 1990.