DOI QR코드

DOI QR Code

Analysis of Crash Load in Crash Impact Test for Fuel Tank of Rotorcraft

항공기용 연료탱크 Phase I 충돌충격시험 충격하중 분석

  • Received : 2015.03.19
  • Accepted : 2015.06.11
  • Published : 2015.06.30

Abstract

Crash impact test is conducted to verify the crashworthiness of fuel tank. Success of the crash impact test means the improvement of survivability of crews by preventing post-crash fire. But, there is a big risk of failure due to huge external load in the crash impact test. The failure of crash impact test can result in serious delay of a entire rotorcraft development because of the design complement and re-production of the test specimens requiring a long-term preparation. Thus, the numerical simulations of the crash impact test has been required at the early design stage to minimize the possibility of trial-and-error in the real test. Present study conducts on the numerical simulation of phase I crash impact test using SPH supported by crash simulation software, LS-DYNA. Test condition of MIL-DTL-27422 is reflected on analysis and material data is acquired by specimen test of fuel cell material. As a result, the crash load on the skin material, overlap area and metal fitting is estimated to confirm the possibility of acquisition of the design load for the determination of the overlap area and adhesive strength.

연료탱크 충돌충격시험은 연료탱크의 내충격 성능을 검증하는 시험으로, 충돌충격시험을 통과한 연료탱크는 생존가능 충돌환경에서 화재가 발생하지 않아 승무원의 생존성이 대폭 향상될 수 있음을 의미한다. 그러나, 충돌충격시험은 높은 충격하중 때문에 실패 위험성이 큰 시험이다. 만약, 충돌충격시험을 실패할 경우에는 설계보완 및 시편 재제작 등으로 재시험 준비 기간이 상당히 소요되어 항공기 개발일정에 상당한 지장을 초래하게 된다. 따라서, 연료탱크 설계 초기에 충돌충격시험에 대한 수치해석을 수행함으로써 실물시험에서의 실패 가능성을 최소화하는 노력이 필요하다. 본 연구에서는 충돌모사 프로그램인 LS-DYNA에서 지원하는 입자법을 사용하여 Phase I 인증시험의 연료탱크 충돌충격시험 수치모사를 수행하였다. 수치해석 조건으로 미군사규격(MIL-DTL-27422)에서 요구하는 시험조건을 반영하였고, 실물 연료탱크 소재의 시편시험을 통해 확보한 물성 데이타를 수치 해석에 적용하였다. 그 결과로 연료탱크 소재와 중첩부위, 피팅 부위에 작용하는 충격하중을 분석함으로써, 연료탱크 설계시 접착강도와 중첩범위 결정을 위한 설계하중 획득 가능성을 타진하였다.

Keywords

References

  1. Hyun-gi Kim, Sung Chan Kim, Jong-Won Lee, In-Hee Hwang, Jang Wook Hue, Dong Woo Shin, Pil Sun Jun, Tae Kyung Jung, Byung Kun Ha, "Assessment of crashworthiness performance for fuel tank of rotorcraft", Journal of the Korean Society for Aeronautical and Space Sciences, 38(8), pp.806-812, 2010. DOI: http://dx.doi.org/10.5139/JKSAS.2010.38.8.806
  2. Ugone, Mary L., "Meling, John E., Snider, Jack D., Gause, Neal J., Carey, Alice F., Acquisition: Fuel Cells of the V-22 Osprey Joint Advanced Vertical Aircraft", D-2003-013, 2002.
  3. Cheng Luo, Hua Liu, Jia-ling Yang, "Simulation and analysis of crashworthiness of fuel tank for helicopters", Chinese journal of aeronautics, 20(3), pp.230-235, 2007. DOI: http://dx.doi.org/10.1016/S1000-9361(07)60037-5
  4. Hyun-gi Kim, Sung Chan Kim, Jong-Won Lee, In-Hee Hwang, Kyung-Soo Kim, "Numerical simulation of crash impact test for fuel tank of rotorcraft", Journal of Computational Structural Engineering Institute of Korea, 24(5), pp.521-530, 2011.
  5. Hyun-gi Kim, Sung Chan Kim, Jong-Won Lee, In-Hee Hwang, "A study on configuration optimization for rotorcraft fuel cells based on neural network", Journal of Computational Structural Engineering Institute of Korea, 25(1), pp.51-56, 2011. DOI: http://dx.doi.org/10.7734/COSEIK.2012.25.1.051
  6. J.J. Monaghan, "Smoothed Particle Hydrodynamics", Annual Review of Astronomy and Astrophysics, 30, pp.543-574, 1992. DOI: http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
  7. J.J. Monaghan, R.A. Gingold, "Shock Simulation by the Particle Method SPH", Journal of Computational Physics, 52(2), pp.374-389, 1983. DOI: http://dx.doi.org/10.1016/0021-9991(83)90036-0
  8. Philipp Hahn, "On the Use of Meshless Methods in Acoustic Simulations", University of Wisconsin-Madison, Thesis of Master, 2009.
  9. U.S.Army Aviation and Missile Command, "Detail Specification for the Tank, Fuel, Crash-Resistant, Ballistic-Tolerant, Aircraft, MIL-DTL-27422D", 2007.