DOI QR코드

DOI QR Code

A study on the vaneless diffuser and volute casing design for the improvement of small centrifugal compressors

소형 원심 압축기의 성능 향상을 위한 베인 없는 디퓨저와 볼류트 케이싱의 설계에 관한 연구

  • Received : 2015.03.13
  • Accepted : 2015.06.11
  • Published : 2015.06.30

Abstract

The performance improvement of a small centrifugal compressor for waste water treatment has been conducted by the design change of vaneless diffuser and volute casing. Existing two compressors use a common impeller, but the width and length of the vaneless diffuser and the cross-sectional shape of the volute casing are different, respectively. Based on the experiment of the existing two compressors and their CFD results, the design of the vaneless diffuser and the volute casing has been changed. It was found that the strength of the interaction among the volute tongues, the vaneless diffusers and the impellers of two existing/one improved compressors, was affected by the cross-sectional area and inlet radial length of the volute casing including system losses' change. The efficiency of the impeller with one existing design was increased as the decrease of the width of the vaneless diffuser, but losses at the diffuser were accumulated. In conclusion, approximately 2.88%p efficiency increase at the design point of the new compressor with the improved design has been confirmed by CFD analysis results.

하수 처리용으로 사용되는 소형 원심 압축기의 베인 없는 디퓨져와 볼류트 케이싱의 성능 개선을 수행하였다. 기존의 두 모델은 임펠러가 동일하나, 베인 없는 디퓨져의 폭과 길이 및 볼류트 케이싱의 형상은 서로 다르다. 기존 모델에 대한 실험과 유동해석 결과를 바탕으로 베인 없는 디퓨져와 볼류트 케이싱의 설계를 변경하였다. 세 모델에 대한 연구 결과로부터, 볼류트 케이싱의 단면적 및 입구 반경 길이는 볼류트 혀와 베인 없는 디퓨져 및 임펠러와의 상호작용 강도에 영향을 주었고, 시스템 손실량에 변화를 나타내었다. 베인 없는 디퓨져 폭이 감소하면 임펠러의 효율은 증가했지만 디퓨져에서의 손실도 증가하였다. 결과적으로 개선된 모델의 효율이 설계 점에서 기존 대비 약 2.88%p 향상된 것이 유동해석 결과로 확인되었다.

Keywords

References

  1. John D. Stanitz, "One-dimensional compressible flow in vaneless diffusers of radial and mixed flow centrifugal compressors, including effects of friction, heat transfer and area change", NACA TN 2610, 1952.
  2. David Jpikse, "Centrifugal compressor design and performance", Concepts ETI, INC, pp.3-1, 3-9, 1996.
  3. W. Byron Brown, "Friction coefficients in a vaneless diffuser", NACA TN 1311, 1947.
  4. Yoen-haeng Heo, Yoojun Hwang, Shin-Hyoung Kang, " Numerical analysis study on prediction about skin friction coefficient of the vaneless diffusers in centrifugal compressor", The Spring conference of the korean society of mechanical engineers, pp.193-194, 2013.
  5. Ahti Jaatinen-Varri, Pekka Roytta, Teemu Turunen-Saaresti, Aki Gronman, "Experimental study of centrifugal compressor vaneless diffuser width", Journal of mechanical science and technology Volume 27, No. 4, pp.1011-1020, 2013. https://doi.org/10.1007/s12206-013-0122-y
  6. Xiaoqing Qiang, Jingfang Teng, Zhaohui Du, " Influence of various volute designs on volute overall performance", Journal of thermal science, Volume 19, No. 6, pp.505-513, 2010. DOI: http://dx.doi.org/10.1007/s11630-010-0416-7
  7. Seon-No Seong, Shin-Hyoung Kang, Kyung-Seok Cho, Woo-June Kim, " Numerical calculation of the flow in a centrifugal compressor volute", The spring and autumn conference of the korean society of mechanical engineers, pp.452-457, 2007.
  8. Chehhat Abdelmadjid, Si Ameur Mohamed, Boumeddance Boussad, " CFD analysis of the volute geometry effect on the turbulent air flow through the turbocharger compressor", TerraGreen 13 International Conference 2013 of Energy Procedia, Volume 36, pp.746-755, 2013.
  9. S.M Yahya, "Turbines, compressors and fans, Forth edition", pp.548-553, Tata McGraw hill education private limited, 2012.
  10. H. Schlichting, "Boundary Layer Theory", pp. 615-629, McGraw-Hill, 1979
  11. Ronald H. Aungier, "Centrifugal Compressors : A strategy for aerodynamic design and analysis", ASME PRESS, pp. 160-165, 2000.
  12. Arttu Reunanen, "Experimental and numerical analysis of different volute in a centrifugal compressor", Thesis for the degree of doctor of science, Lappeenranta University of Technology, pp.49-81, 2001.