DOI QR코드

DOI QR Code

A Study on the Biological Activities of Wild Mushroom Extracts from Jeju Island

제주 야생 버섯 추출물의 생리활성 연구

  • Lee, Hye Ja (Department of Natural Product Laboratory, Daebong LS, Ltd.) ;
  • Kim, Gi Ok (Jeju Biodiversity Research Institute) ;
  • Park, Jin Oh (Department of Natural Product Laboratory, Daebong LS, Ltd.) ;
  • Joo, Chul Gue (Department of Natural Product Laboratory, Daebong LS, Ltd.)
  • 이혜자 (대봉엘에스(주) 천연물소재응용연구소) ;
  • 김기옥 ((재)제주테크노파크 생물종다양성연구소) ;
  • 박진오 (대봉엘에스(주) 천연물소재응용연구소) ;
  • 주철규 (대봉엘에스(주) 천연물소재응용연구소)
  • Received : 2015.06.16
  • Accepted : 2015.06.22
  • Published : 2015.06.30

Abstract

In this study, we investigated the antioxidant, whitening and anti-inflammatory effects of 12 species of wild mushrooms in Jeju Island. Their anti-oxidative effects were measured by the free radical scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH), and tyrosinase inhibitory activities were determined for the whitening effect. In addition, inhibitory activities of NO production for anti-inflammation were investigated. As a result, Elfvingia applanata extract and Fomitopsidaceae sp. extracts showed higher free radical scavenging activities ($FSC_{50}$; $74.8{\mu}g/mL$, $182.6{\mu}g/mL$, respectively) than other extracts. Elfvingia applanata extract ($IC_{50}$; $346.8{\mu}g/mL$) showed higher activity than the Arbutin ($IC_{50}$; $421.6{\mu}g/mL$) on tyrosinase inhibitory activity. Elfvingia applanata extract and Daedaleopsis styracina extract showed anti-inflammatory activity of 74.1% and 62.9% respectively, at the concentration of $100{\mu}g/mL$. Furthermore, the extracts inhibited NO production in a dose-dependent manner. In conclusion, we evaluated the biological activities of 12 species of wild mushrooms in Jeju Island, Elfvingia applanata, Fomitopsidaceae sp. and Daedaleopsis styracina could have the functional effects as a cosmetic raw material.

본 연구에서는 제주도에 자생하고 있는 12종의 야생 버섯에 대한 항산화, 미백 그리고 염증억제 효능을 조사하였다. 항산화 효능은 1,1-diphenyl-2-picrylhydrazyl (DPPH)를 이용한 free radical 소거 활성을 측정하였으며, 미백 효능 검정을 위하여 tyrosinase 저해활성을 측정하였다. 그리고 항염 효능 검정을 위하여 nitric oxide (NO) 생성 저해활성을 측정하였다. 그 결과, DPPH 소거 활성($FSC_{50}$)에서는 참나무 잔나비버섯 추출물($74.8{\mu}g/mL$), 서어나무 잔나비버섯 추출물($182.6{\mu}g/mL$)이 높은 억제 활성을 나타내었다. Tyrosinase 저해 활성($IC_{50}$)에서는 참나무 잔나비버섯 추출물($346.8{\mu}g/mL$)이 가장 높은 활성을 나타내었고, 이는 비교 대조군으로 사용한 Arbutin ($421.6{\mu}g/mL$)보다 높은 활성을 나타내었다. 염증 억제 효능 관련 NO 생성 저해율을 측정한 결과, $100{\mu}g/mL$ 처리 시 참나무 잔나비버섯과 때죽나무 잔나비버섯에서 각각 74.1%, 62.9%의 억제활성을 나타내었다. 그리고, 이들을 농도별로 처리한 결과 농도 의존적으로 NO 생성을 저해함을 확인할 수 있었다. 이상의 연구결과로부터, 참나무 잔나비버섯, 서어나무 잔나비버섯, 때죽나무 잔나비버섯에서 화장품 효능 원료로서의 가능성을 발견할 수 있었다.

Keywords

References

  1. C. E. Cross, B. Halliwell, E. T. Borish, W. A. Pryor, B. N. Ames, R. L. Saul, J. M. McCord, and D. Harman, Oxygen radicals and human disease, Ann. Intern. Med., 107, 526 (1987). https://doi.org/10.7326/0003-4819-107-4-526
  2. J. Ancerewicz, E. Migliavacca, P. A. Carrupt, B. Testa, F. Bree, R. Zini, J. P. Tillement, S. Labidalle, D. Guyot, A. M. Chauvet-Monges, A. Creva, and A. Le Ridant, Structure-property relationships of trimetazidine derivatives and model compounds as potential antioxidants, Free Radic. Biol. Med., 25, 113 (1998). https://doi.org/10.1016/S0891-5849(98)00072-0
  3. Y. J. Kim and H. Uyama, Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future, Cell Mol. Life Sci., 62, 1707 (2005). https://doi.org/10.1007/s00018-005-5054-y
  4. J. H. Ryu, H. Ahn, J. Y. Kim, and Y. K. Kim, Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage, Phytother. Res., 17, 485 (2003). https://doi.org/10.1002/ptr.1180
  5. B. A. Wani, R. H. Bodha, and A. H. Wani, Nutritional and medicinal importance of mushrooms, J. Medicinal Plants Res., 4, 2598 (2010). https://doi.org/10.5897/JMPR09.565
  6. W. Y. Lee, E. J. Park, J. K. Ahn, and K. H. Ka, Ergothioneine contents in fruiting bodies and their enhancement in mycelial cultures by the addition of methionine, Mycobiology., 37, 43 (2009). https://doi.org/10.4489/MYCO.2009.37.1.043
  7. P. Maity, S. Samanta, A. K. Nandi, I. K. Sen, S. Paloi, K. Acharya, and S. S. Islam, Structure elucidation and antioxidant properties of a soluble ${\beta}$-D-glucan from mushroom Entoloma lividoalbum, Int. J. Biol. Macromol., 63, 140 (2014). https://doi.org/10.1016/j.ijbiomac.2013.10.040
  8. E. J. Lee, J. E. Kim, M. J. Park, D. C. Park, and S. P. Lee, Antimicrobial effect of the submerged culture of Sparassis crispa in Soybean curd whey, Korean J. Food Preserv., 20, 111 (2013). https://doi.org/10.11002/kjfp.2013.20.1.111
  9. Y. Qi, X. Zhao1, Y. I. Lim, and K. Y. Park, Antioxidant and anticancer effects of edible and medicinal mushrooms, Korean Soc. Food Sci. Nutr., 42, 655 (2013). https://doi.org/10.3746/jkfn.2013.42.5.655
  10. S. Patel and A. Goyal, 3 Biotech, Recent developments in mushrooms as anti-cancer therapeutics: a review, 2(1), 1 (2012) https://doi.org/10.1007/s13205-011-0036-2
  11. 고평열, 김찬수, 신용만, 석순자, 변광옥. 제주지역의 야생버섯, 국립산림과학원, 463 (2009).
  12. M. S. Blois, Antioxidant determination by the use of a stable free radical, Nature, 26, 1199 (1958).
  13. J. W. Choi, S. I. Kim, S. M. Jeon, J. Y. Kim, H. J. Yang, K. H. Lee, and S. N. Park, Antioxidative and cellular protective effects of Jeju native plant extracts against reactive oxygen species, J. Soc. Cosmet. Scientists Korea, 32, 181 (2006).
  14. S. Y. Ryu, M. H. Oak, S. K. Yoon, D. I. Cho, and G. S. Yoo, Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris, Planta Med., 66, 358 (2000). https://doi.org/10.1055/s-2000-8531
  15. M. V. Berridge, P. M. Herst, and A. S. Tan, Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annu. Rev., 11, 127 (2005). https://doi.org/10.1016/S1387-2656(05)11004-7
  16. S. J. Jeong, J. H. Lee, H. N. Song, N. S. Seong, S. E. Lee, and N. I. Baeg, Screening for antioxidant activity of plant medicinal extracts, J. Korean Soc. Appl. Biol. Chem., 47, 135 (2004).
  17. Y. Zhu, C. Chen, S. Zhao, J. Yang, H. Song, F. Ge, D. Liu, Inhibitory mechanism of salidroside on tyrosinase, J. Food. Nutr. Res., 2 (10), 698 (2014). https://doi.org/10.12691/jfnr-2-10-8
  18. C. F. Nathan and H. B. Jr. Hibbs, Role of nitric oxide synthesis in macrophage antimicrobial activity, Curr. Opinion. Immunol., 3, 65 (1991). https://doi.org/10.1016/0952-7915(91)90079-G
  19. K. Y. Stokes, D. Cooper, A. Tailor, and D. N. Granger, Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide, Free Radical. Biol. Med., 33, 1026 (2002). https://doi.org/10.1016/S0891-5849(02)01015-8
  20. M. Popova, B. Trusheva, M. Gyosheva, I. Tsvetkova, and V. Bankova, Antibacterial triterpenes from the threatened wood-decay fungus Fomitopsis rosea, Fitoterapia, 80, 263 (2009). https://doi.org/10.1016/j.fitote.2009.02.008