DOI QR코드

DOI QR Code

침향 추출물의 라디칼 및 췌장 지방분해 효소저해 활성 평가

Evaluation of free radical scavenging and pancreatic lipase inhibitory effects of Aquilaria agallocha extracts

  • 이하영 (한국한방산업진흥원) ;
  • 이인철 (서원대학교 화장품과학과) ;
  • 곽재훈 (대구한의대학교 바이오산업융합학부) ;
  • 김태훈 (대구대학교 식품공학과)
  • Lee, Ha Yeong (Institute for Korea Traditional Medical Industry) ;
  • Lee, In-Chul (Department of Cosmetic Science and Technology, Seowon University) ;
  • Kwak, Jae Hoon (Faculty of Biotechnology Convergence, Daegu Haany University) ;
  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
  • 투고 : 2015.04.23
  • 심사 : 2015.05.28
  • 발행 : 2015.06.30

초록

팥꽃나무과 방향성 수지질의 상록성 교목인 침향을 80% MeOH로 침지 추출하여 얻어진 추출물에 대해 $CH_2Cl_2$, EtOAc 및 n-BuOH로 순차 용매 분획하였고, 얻어진 결과물에 대하여 녹차의 항산화 성분으로서도 잘 알려져 있는 천연 항산화제인 (+)-catechin을 대조군으로 하여 DPPH, $ABTS^+$ 라디칼 소거법에 의한 항산화활성 평가를 실시한 결과, 항산화 활성은 시료의 처리농도에 비례하게 효능을 나타내는 것으로 확인되었으며 그중에서도 DPPH 라디칼 소거활성은 페놀성 화합물의 함량이 상대적으로 높은 $CH_2Cl_2$ 가용부에서 $26.1{\pm}4.4{\mu}g/mL$, EtOAc 가용부에서 $24.8{\pm}3.9{\mu}g/mL$의 우수한 $IC_{50}$값을 나타내었다. 또한 $ABTS^+$ 라디칼 소거능은 $CH_2Cl_2$, EtOAc 및 n-BuOH 가용부에서 각각 $5.3{\pm}0.4{\mu}g/mL$, $5.5{\pm}0.4{\mu}g/mL$ 활성이 확인 되었으며, 총 페놀함량과의 강한 상관관계가 시사되었고 페놀성의 활성물질의 존재가 시사되었다. 또한, 항비만 활성과 관련된 pancreatic lipase 저해활성을 측정한 결과, 오일의 형태로 얻어진 $CH_2Cl_2$ 가용부의 $IC_{50}$값은 $1.1{\pm}0.3{\mu}g/mL$의 저해율을 나타내었으며 이는 대조군인 orlistat에 비해 약하나 추출물 상태임을 고려할 때 단일물질로 정제할 경우 더욱 우수한 효능의 화합물이 존재할 가능성을 시사하였다. 향후 이들 식의약품 소재개발을 위한 구체적인 자료 수립을 위하여 효소활성을 나타내는 성분들에 대해 활성추적탐색법(activity-guided isolation)에 따라 활성물질을 추적, 분리하는 연구를 통한 효능물질의 동정 및 활성 기작에 대한 연구가 필요하며, 침향의 식물 화학적 성분연구에 대한 기초자료로 활용가능하리라 사료된다.

In a continuing screening of selected medicinal plants native to South Korea, the antioxidant and pancreatic lipase inhibitory activities of an aqueous methanolic extract from the heartwood of Aquilaria agallocha were investigated. Eighty percent of the methanolic extract of A. agallocha was further divided into $CH_2Cl_2$, EtOAc and n-BuOH in order to yield four solvent-soluble portions, namely $CH_2Cl_2$-soluble, EtOAc-soluble, n-BuOH-soluble and $H_2O$ residue. The antioxidant properties were evaluated by employing radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radicals, while the anti-obesity efficacy of A. agallocha extracts and solvent-soluble portions were tested by porcine pancreatic lipase assay. All tested samples showed dose-dependent radical scavenging and pancreatic lipase inhibitory activities. Among the tested extracts and solvent-soluble portions, the $CH_2Cl_2$-soluble portion showed much higher radical scavenging activity and pancreatic lipase inhibitory properties when compared with other solvent-soluble portions. This result suggested that there was a significant relationship between the total phenolic content and biological efficacies, and A. agallocha extract might be considered as a new potential source of natural antioxidants and as a pancreatic lipase inhibitory source. A more systematic investigation of this biomass will be performed for further investigation of activity against antioxidative and anti-obesity effects.

키워드

참고문헌

  1. Videla LA, Fermandez V (1988) Biochemical aspects of cellular oxidative stress. Arch Biol Med Exp, 21, 85-92
  2. Halliwell B, Aruoma OJ (1991) DNA damage by oxygen-derived species. FEBS Lett, 281, 9-19 https://doi.org/10.1016/0014-5793(91)80347-6
  3. Jennings PE, Barnett AH (1988) New approaches to the pathogenesis and treatment of diabetic microangiopathy, Diabetic Med, 5, 111-117 https://doi.org/10.1111/j.1464-5491.1988.tb00955.x
  4. Shim JS, Kim SD, Kim TS, Kim KN (2005) Biological activities of flavonoid glycosides isolated from Angelica keiskei. Korean J Food Sci Technol, 37, 78-83
  5. Farag RS, Badei AZMA, Hewedi FM, El-Baroty GSA, (1989) Antioxidant activity of some spice essential oils on linoleic acid oxidation in aqueous media. J American Oil Chem Soc, 66, 792-799 https://doi.org/10.1007/BF02653670
  6. Frei B (1994) National antioxidants in human health and disease, Academic Press, San Diego, p 44-55
  7. Branen AL (1975) Toxicology and biochemistry of butylated hydroxy anisole and bytylated hydoxytoluane. J Oil Chem Soc, 52, 59-62 https://doi.org/10.1007/BF02901825
  8. Masaki H, Sakaki S, Atsumi T, Sakurai H (1995) Active-oxygen scavenging activity of plants extracts. Biol Pharm Bull, 18, 162-166 https://doi.org/10.1248/bpb.18.162
  9. Bray GA, Popkin BM (1998) Dietary fat intake dose affect obesity. Am J Clin Nutr, 68, 1157-1173
  10. Bray GA, Popkin BM (1999) Dietary fat affects obesity rate. Am J Clin Nutr, 70, 572-573
  11. Levinson ML (1977) Obesity and health. Prev Med, 6, 172-180 https://doi.org/10.1016/0091-7435(77)90016-0
  12. Rexrode KM, Manson JE, Hennekens CH (1996) Obesity and cardiovascular disease. Curr Opin Cardiol, 11, 490-495 https://doi.org/10.1097/00001573-199609000-00007
  13. Sjostrom L (1992) Morbidity of severely obese subjects. Am J Cliv Nutr, 55, 508-515
  14. Bitou N, Nimomiya M, Tsjita T, Okuda H (1999) Screening of lipase inhibitors from marine algae. Lipids, 34, 441-445 https://doi.org/10.1007/s11745-999-0383-7
  15. Drent ML, Larsson I, William-Olsson T, Quaade F, Czubayko F, Von Bergmann K, Strobel W, Sjotro L, Van der Veen EA (1995) Orlistat (RO 18-0647), a lipase inhibitor, in the treatment of human obesity : a multiple dose study. Int J Obesity, 19, 221-226
  16. Hadvay P, Lengsfeld H, Wolter H (1988) Inhibition of pancreatic lipase in vitro by covalent inhibitor tetrahydrolipstatin. Biochem J, 256, 357-361 https://doi.org/10.1042/bj2560357
  17. Peter C, Williams G (2001) Drug treatment of obesity : from past failures to future successes?. Br J Clin Pharmacol, 51, 135-141
  18. Yamamoto M, Shimura S, Itoh Y, Ohsaka T, Egawa M, Inoue S (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obesity, 24, 758-764 https://doi.org/10.1038/sj.ijo.0801222
  19. Kim HY, Kang MH (2005) Screening of Korean medicinal plants for lipase inhibitory activity. Phytother Res, 19, 359-361 https://doi.org/10.1002/ptr.1592
  20. Lee EM, Lee SS, Chung BY, Cho JY, Lee IC, Ahn SR, Jang SJ, Kim TH (2010) Pancreatic lipase inhibition by C-glucosidic flavones isolated from Eremochloa ophiuroides. Molecules, 15, 8251-8259 https://doi.org/10.3390/molecules15118251
  21. Hong JY, Shin SR, Bae MJ, Bae JS, Lee IC, Kwon OJ, Jung JW, Kim YH, Kim TH (2010) Pancreatic lipase inhibitors isolated from the leaves of cultivated mountain ginseng (Panax ginseng). Korean J Food Preserv, 17, 727-732
  22. Park CH, Chung BY, Lee SS, Bai HW, Cho JY, Jo C, Kim TH (2013) Radiolytic transformation of rotenone with potential anti-adipogenic activity. Bioorg Med Chem Lett, 23, 1099-1103 https://doi.org/10.1016/j.bmcl.2012.12.003
  23. Yuk CS, Lee SW, Yu SJ, Kim TH, Hahn YK, Lee SY, Moon YH, Hahn MW, Lee, KS (1981) Herbal Medicine of Korea, Gyechukmunwhasa, Seoul, p 345
  24. Kim YC, Lee EH, Lee YM, Kim KH, Song B, Lee EJ, Kim HM (1997) Effect of the aqueous extract of Aquilaria agallocha stems on the immediate hypersensitivity reactions. J Ethnopharmacol, 58, 31-38 https://doi.org/10.1016/S0378-8741(97)00075-5
  25. Dash M, Patra JK, Panda PP (2008) Phytochemical and antimicrobial screening of extracts of Aquilaria agallocha Roxb. Afr J Biotech, 7, 3531-3534
  26. Miniyar BP, Chitre TS, Karve SS, Deuskar HJ, Jain KS (2008) Antioxidant activity of ethylacetate extract of Aquilaria agellocha on nitrite-induced methemoglobin formation. Int J Green Pharm, 1, 43-44
  27. Konishi T, Sugimoto A, Kiyosawa S, Fujiwara Y (1992) Studies on Agarwood (jinko).XII Structures of pentahydroxy-2-(2-phenethyl) chromone derivative. Chem Pharm Bull, 40, 778-779 https://doi.org/10.1248/cpb.40.778
  28. Ishihara M, Tsuneya T, Uneyama K (1993) Sesquiterpene constituents in agarwood, Phytochem, 33, 1147-1155 https://doi.org/10.1016/0031-9422(93)85039-T
  29. Bhandari P, Pant P, Restogi RP (1982) Aquillochin, a coumarinolignan from Aguilaria gallocha, Phytochem, 21, 2147-2149 https://doi.org/10.1016/0031-9422(82)83075-6
  30. Blois MS (1958) Antioxidant activity determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  31. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  32. Kim JH, Kim HJ, Park HW, Youn SH, Choi DY, Shin CS (2007) Development of inhibitors against lipase and alpha-glucosidase from derivatives of monascus pigment. FEMS Microbiol Lett, 276, 93-98 https://doi.org/10.1111/j.1574-6968.2007.00917.x
  33. Singleton V, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol, 299, 152-172 https://doi.org/10.1016/S0076-6879(99)99017-1
  34. Torel J, Gillard J, Gillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochem, 25, 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  35. Cao G, Sofic E, Prior R (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med, 22, 749-760 https://doi.org/10.1016/S0891-5849(96)00351-6
  36. Cai YZ, Mei S, Xing J, Luo Q, Corke H (2006) Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci, 15, 2872-2888