DOI QR코드

DOI QR Code

Acetyl Eburicoic Acid from Laetiporus sulphureus var. miniatus Suppresses Inflammation in Murine Macrophage RAW 264.7 Cells

  • Saba, Evelyn (Laboratory of Veterinary Physiology and Cell Signaling, Cardiovascular Research Institute and College of Veterinary Medicine, Kyungpook National University) ;
  • Son, Youngmin (Laboratory of Veterinary Physiology and Cell Signaling, Cardiovascular Research Institute and College of Veterinary Medicine, Kyungpook National University) ;
  • Jeon, Bo Ra (Laboratory of Veterinary Physiology and Cell Signaling, Cardiovascular Research Institute and College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Seong-Eun (Division of Biotechnology and Advanced Institute of Environment and Bioscience, Chonbuk National University) ;
  • Lee, In-Kyoung (Division of Biotechnology and Advanced Institute of Environment and Bioscience, Chonbuk National University) ;
  • Yun, Bong-Sik (Division of Biotechnology and Advanced Institute of Environment and Bioscience, Chonbuk National University) ;
  • Rhee, Man Hee (Laboratory of Veterinary Physiology and Cell Signaling, Cardiovascular Research Institute and College of Veterinary Medicine, Kyungpook National University)
  • Received : 2015.02.09
  • Accepted : 2015.04.08
  • Published : 2015.06.30

Abstract

The basidiomycete Laetiporus sulphureus var. miniatus belongs to the Aphyllophorales, Polyporaceae, and grows on the needleleaf tree. The fruiting bodies of Laetiporus species are known to produce N-methylated tyramine derivatives, polysaccharides, and various lanostane triterpenoids. As part of our ongoing effort to discover biologically active compounds from wood-rotting fungi, an anti-inflammatory triterpene, LSM-H7, has been isolated from the fruiting body of L. sulphureus var. miniatus and identified as acetyl eburicoic acid. LSM-H7 dose-dependently inhibited the NO production in RAW 264.7 cells without any cytotoxicity at the tested concentrations. Furthermore it suppressed the production of proinflammatory cytokines, mainly inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor ${\alpha}$, when compared with glyceraldehyde 3-phosphate dehydrogenase. These data suggest that LSM-H7 is a crucial component for the anti-inflammatory activity of L. sulphureus var. miniatus.

Keywords

References

  1. Mattila P, Salo-Vaananen P, Konko K, Aro H, Jalava T. Basic composition and amino acid contents of mushrooms cultivated in Finland. J Agric Food Chem 2002;50:6419-22. https://doi.org/10.1021/jf020608m
  2. Borchers AT, Krishnamurthy A, Keen CL, Meyers FJ, Gershwin ME. The immunobiology of mushrooms. Exp Biol Med (Maywood) 2008;233:259-76. https://doi.org/10.3181/0708-MR-227
  3. Yang N, Tong X, Xiang Y, Zhang Y, Liang Y, Sun H, Wang DC. Molecular character of the recombinant antitumor lectin from the edible mushroom Agrocybe aegerita. J Biochem 2005;138:145-50. https://doi.org/10.1093/jb/mvi109
  4. Jeurink PV, Noguera CL, Savelkoul HF, Wichers HJ. Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells. Int Immunopharmacol 2008;8:1124-33. https://doi.org/10.1016/j.intimp.2008.04.004
  5. Dinarello CA. Proinflammatory cytokines. Chest 2000;118:503-8. https://doi.org/10.1378/chest.118.2.503
  6. Yayeh T, Jung KH, Jeong HY, Park JH, Song YB, Kwak YS, Kang HS, Cho JY, Oh JW, Kim SK, et al. Korean red ginseng saponin fraction downregulates proinflammatory mediators in LPS stimulated RAW264.7 cells and protects mice against endotoxic shock. J Ginseng Res 2012;36:263-9. https://doi.org/10.5142/jgr.2012.36.3.263
  7. Akira S. Mammalian toll-like receptors. Curr Opin Immunol 2003;15:5-11. https://doi.org/10.1016/S0952-7915(02)00013-4
  8. Medvedev AE, Piao W, Shoenfelt J, Rhee SH, Chen H, Basu S, Wahl LM, Fenton MJ, Vogel SN. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J Biol Chem 2007;282:16042-53. https://doi.org/10.1074/jbc.M606781200
  9. Hsu HY, Hua KF, Lin CC, Lin CH, Hsu J, Wong CH. Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. J Immunol 2004;173:5989-99. https://doi.org/10.4049/jimmunol.173.10.5989
  10. Imazeki R, Hongo T. Coloured illustrations of mushrooms of Japan. Vol. II. Osaka: Hoikusha Press; 1998. p. 141-2.
  11. Hwang HS, Lee SH, Baek YM, Kim SW, Jeong YK, Yun JW. Production of extracellular polysaccharides by submerged mycelial culture of Laetiporus sulphureus var. miniatus and their insulinotropic properties. Appl Microbiol Biotechnol 2008;78:419-29. https://doi.org/10.1007/s00253-007-1329-6
  12. Yoshikawa K, Bando S, Arihara S, Matsumura E, Katayama S. A benzofuran glycoside and an acetylenic acid from the fungus Laetiporus sulphureus var. miniatus. Chem Pharm Bull (Tokyo) 2001;49:327-9. https://doi.org/10.1248/cpb.49.327
  13. Leon F, Quintana J, Rivera A, Estevez F, Bermejo J. Lanostanoid triterpenes from Laetiporus sulphureus and apoptosis induction on HL-60 human myeloid leukemia cells. J Nat Prod 2004;67:2008-11. https://doi.org/10.1021/np049762o
  14. Mungrue IN, Husain M, Stewart DJ. The role of NOS in heart failure: lessons from murine genetic models. Heart Fail Rev 2002;7:407-22. https://doi.org/10.1023/A:1020762401408
  15. Green SJ, Scheller LF, Marletta MA, Seguin MC, Klotz FW, Slayter M, Nelson BJ, Nacy CA. Nitric oxide: cytokineregulation of nitric oxide in host resistance to intracellular pathogens. Immunol Lett 1994;43:87-94. https://doi.org/10.1016/0165-2478(94)00158-8
  16. Kurumbail RG, Kiefer JR, Marnett LJ. Cyclooxygenase enzymes: catalysis and inhibition. Curr Opin Struct Biol 2001;11:752-60. https://doi.org/10.1016/S0959-440X(01)00277-9
  17. Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol 2009;27:621-68. https://doi.org/10.1146/annurev.immunol.25.022106.141627
  18. Ferguson-Smith AC, Chen YF, Newman MS, May LT, Sehgal PB, Ruddle FH. Regional localization of the interferon-beta 2/B-cell stimulatory factor 2/hepatocyte stimulating factor gene to human chromosome 7p15-p21. Genomics 1988;2:203-8. https://doi.org/10.1016/0888-7543(88)90003-1
  19. Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM, Dinarello CA. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci U S A 1984;81:7907-11. https://doi.org/10.1073/pnas.81.24.7907
  20. van der Poll T, Keogh CV, Guirao X, Buurman WA, Kopf M, Lowry SF. Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumonia. J Infect Dis 1997;176:439-44. https://doi.org/10.1086/514062
  21. Gahring LC, Carlson NG, Kulmar RA, Rogers SW. Neuronal expression of tumor necrosis factor alpha in the murine brain. Neuroimmunomodulation 1996;3:289-303. https://doi.org/10.1159/000097283
  22. Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, Murphy GF. Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci U S A 1991;88:4220-4. https://doi.org/10.1073/pnas.88.10.4220
  23. Verstovsek S, Maccubbin D, Ehrke MJ, Mihich E. Tumoricidal activation of murine resident peritoneal macrophages by interleukin 2 and tumor necrosis factor alpha. Cancer Res 1992;52:3880-5.