DOI QR코드

DOI QR Code

Selective NO2 Sensors Using MoS2-MoO2 Composite Yolk-shell Spheres

  • Jeong, Seong Yong (Department of Materials Science and Engineering, Korea University) ;
  • Choi, Seung Ho (Department of Materials Science and Engineering, Korea University) ;
  • Yoon, Ji-Wook (Department of Materials Science and Engineering, Korea University) ;
  • Won, Jong Min (Department of Materials Science and Engineering, Korea University) ;
  • Kang, Yun Chan (Department of Materials Science and Engineering, Korea University) ;
  • Park, Joon-Shik (Smart Convergence Sensor Research Center, Korea Electronic Technology Institute (KETI)) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • Received : 2015.05.05
  • Accepted : 2015.05.26
  • Published : 2015.05.31

Abstract

The gas sensing characteristic of $MoS_2-MoO_2$ composite yolk-shell spheres were investigated. $MoO_3$-carbon composite spheres were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Mo-source and sucrose in nitrogen, which were converted into $MoO_3$ yolk-shell spheres by heat treatment at $400^{\circ}C$ in air. Subsequently, $MoS_2-MoO_2$ composite yolk-shell spheres were prepared by the partial sulfidation of $MoO_3$. The $MoS_2-MoO_2$ composite yolk-shell spheres showed relatively low and irreversible gas sensing characteristics at < $200^{\circ}C$. In contrast, the sensor showed high and reversible response (S=resistance ratio) to 5 ppm $NO_2$ (S=14.8) at $250^{\circ}C$ with low cross-responses (S=1.17-2.13) to other interference gases such as ethanol, CO, xylene, toluene, trimethylamine, $NH_3$, $H_2$, and HCHO. The $MoS_2-MoO_2$ composite yolk-shell spheres can be used as reliable sensors to detect $NO_2$ in a selective manner.

Keywords

References

  1. H. Hwang, H. Kim, and J. Cho, "$MoS_2$ nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials", Nano Lett., Vol. 11, pp. 4826-4830, 2011. https://doi.org/10.1021/nl202675f
  2. H. Li, M. Si, S. Najmaei, A. T. Neal, Y. Du, P. M. Ajayan, J. Lou, and P. D. Ye, "Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films", Nano Lett., Vol. 13, pp. 2640-2646, 2013. https://doi.org/10.1021/nl400778q
  3. M. Donarelli, S. Prezioso, F. Perrozzi, F. Busti, M. Nardone, L. Giancaterini, C. Cantalini, and L Ottaviano, "Response to $NO_2$ and other gases of resistive chemically exfoliated $MoS_2$-based gas sensors", .Sens. Actuators B, Vol. 207, pp. 602-613, 2015. https://doi.org/10.1016/j.snb.2014.10.099
  4. H. Li, J. Wu, Z. Yin, and H. Zhang, "Preparation and applications of mechanically exfoliated single-layer and multilayer $MoS_2$ and $WSe_2$ nanosheets", Acc. Chem. Res., Vol. 47, pp. 1067-1075, 2014. https://doi.org/10.1021/ar4002312
  5. J. K. Miremadi, R. C. Singh, S. R. Morrison, and J. Colbow, "A highly sensitive and selective hydrogen sensor from thick oriented films of $MoS_2$", Appl. Phys. A, Vol. 63, pp. 271-275, 1996.
  6. B. Cho, M. G. Han, M. Choi, J. Yoon, A. R. Kim, Y.-J. Lee, S.-G. Park, J.-D. Kwon, C. S. Kim, M. Song, Y. Jeong, K.- S. Nam, S. Lee, T. J. Yoo, C. G. Kang, B. H. Lee, P. M. Ajayan, and D.-H. Kim, "Charge-transfer-based gas sensing using atomic-layer $MoS_2$", Sci. Rep., Vol. 5, pp. 8052, 2015. https://doi.org/10.1038/srep08052
  7. Y. N, Ko, Y. C. Kang, and S. B. Park, "Superior electrochemical properties of $MoS_2$ powders with a $MoS_2$@void@$MoS_2$ configuration", Nanoscale, Vol. 6, pp. 4508-4512, 2014. https://doi.org/10.1039/c4nr00064a
  8. Y. N. Ko, S. B. Park, J.-H. Lee, and Y. C. Kang, "Comparison of the electrochemical properties of yolk-shell and dense structured $CoFe_2O_4$ powders prepared by a spray pyrolysis process", RSC Adv., Vol. 4, pp. 40188-40192, 2014. https://doi.org/10.1039/C4RA05789A
  9. Y. J. Hong, J.-W. Yoon, J.-H. Lee, and Y. C. Kang, "Onepot synthesis of Pd-loaded $SnO_2$ yolk-shell nanostructures for ultraselective methyl benzene sensors," Chem. -Eur. J., Vol. 20, pp. 2737-2741, 2014. https://doi.org/10.1002/chem.201304502
  10. J.-W. Yoon, Y. J. Hong, Y. C. Kang, and J.-H. Lee, "High performance chemiresistive $H_2S$ sensors using Ag-loaded $SnO_2$ yolk-shell nanostructures," RSC Adv., Vol. 4, pp. 16067-16074, 2014. https://doi.org/10.1039/C4RA01364F
  11. Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.- T. Liang, C.-W. Chu, and L.-J. Li, "Wafer-scale $MoS_2$ thin layers prepared by $MoO_3$ sulfurization," Nanoscale, Vol. 4, pp. 6637-6641, 2012. https://doi.org/10.1039/c2nr31833d
  12. I. H. Cho, Y. C. Kang, and S. B Park, "Thiophene hydrodesulfurization of unsupported Co-Mo catalysts prepared by spray pyrolysis method", Korean J. Chem. Eng., Vol. 35, pp. 814-818, 1997.
  13. Y. H. Cho, Y. N. Ko, Y. C. Kang, I.-D Kim, and J. H. Lee, "Ultraselective and ultrasensitive detection of trimethylamine using $MoO_3$ nanoplates prepared by ultrasonic spray pyrolysis", Sens. Actuators B, Vol. 195, pp. 189-196, 2014. https://doi.org/10.1016/j.snb.2014.01.021
  14. Q. Yue, Z. Shao, S. Chang, and J. Li, "Adsorption of gas molecules on monolayer $MoS_2$ and effect of applied electric field" Nano Res. Lett., Vol. 8, pp. 425-431, 2013. https://doi.org/10.1186/1556-276X-8-425