DOI QR코드

DOI QR Code

Removal of Cu (II) from aqueous solutions using magnetite: A kinetic, equilibrium study

  • Kalpakli, Yasemen (Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus)
  • 투고 : 2014.12.11
  • 심사 : 2014.03.11
  • 발행 : 2015.06.25

초록

Water pollution means that the physical, chemical and biological properties of water are changing. In this study, adsorption was chosen as the treatment method because it is an eco-friendly and low cost approach. Magnetite is a magnetic material that can synthesize chemical precipitation. Magnetite was used for the removal of copper in artificial water samples. For this purpose, metal removal from water dependent on the pH, initial concentration of metal, amount of adsorbent and effect of sorption time were investigated. Magnetite was characterized using XRD, SEM and particle size distribution. The copper ions were determined by atomic absorption spectrometry. The adsorption of copper on the magnetite was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 10 to $50mg\;l^{-1}$. Optimum conditions for using magnetite were found to be concentration of $10mg\;L^{-1}$, pH: 4.5, contact time: 40 min. Optimum adsorbent was found to be 0.3 gr. Furthermore, adsorption isotherm data were analyzed using the Langmuir and Freundlich equations. The adsorption data fitted well with the Freundlich ($r^2=0.9701$) and Langmuir isotherm ($r^2=0.9711$) equations. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were described well by a pseudo-second-order kinetic model.

키워드

참고문헌

  1. Babes, L., Denizot, B., Tanguy, G., Le Jeune, J.J. and Jallet, P. (1999), "Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study", J. Colloid Interf. Sci., 212(2), 474-482. https://doi.org/10.1006/jcis.1998.6053
  2. Bujnakova, Z., Balaz, P., Zorkovska, A., Sayagues, M.J., Kovac, J. and Timko, M. (2013), "Arsenic sorption by nanocrystalline magnetite: An example of environmentally promising interface with geosphere", J. Hazard. Mater., 262, 1204-1212. https://doi.org/10.1016/j.jhazmat.2013.03.007
  3. Buzmakov, V.M. and Pshenichnikov, A.F. (1996), "On the structure of microaggregates in magnetite colloids", J. Colloid Interf. Sci., 182(1), 63-70. https://doi.org/10.1006/jcis.1996.0437
  4. Cheng, F.U., Su, C.H., Yang, Y.S., Yeh, C.S., Tsai, C.Y., Wu, C.L., Wu, M.T. and Shieh, D.B. (2005), "Characterization of aqueous dispersions of $Fe_3O_4$ nanoparticles and their biomedical applications", Biomaterials, 26(7),729-738. https://doi.org/10.1016/j.biomaterials.2004.03.016
  5. Chiron, N., Guilet, R. and Deydier, E. (2003), "Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models", Water Res., 37(13), 3079-3086. https://doi.org/10.1016/S0043-1354(03)00156-8
  6. Chung, J., Chun, J., Lee, J., Leea, S.H., Lee, Y.J. and Hong, S.W. (2012), "Sorption of Pb(II) and Cu(II) onto multi-amine grafted mesoporous silica embedded with nano-magnetite: Effects of steric factors", J. Hazard. Mater., 239-240, 183-191. https://doi.org/10.1016/j.jhazmat.2012.08.063
  7. Cotton, F.A. and Wilkinson, G. (1988), Advanced Inoeganic Chemistry, Wiley Interscience, New York, NY, USA.
  8. Cuppett, J.D., Duncan, S.E. and Dietrich, A.M. (2006), "Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response", Chem. Senses, 31(7), 689-697. https://doi.org/10.1093/chemse/bjl010
  9. Dhoble, R.M., Lunge, S., Bhole, A.G. and Rayalu, S. (2011), "Magnetic binary oxide particles (MBOP): A promising adsorbent for removal of As (III) in water", Water Res., 45(16), 4769-4781. https://doi.org/10.1016/j.watres.2011.06.016
  10. Dönmez, G. and Aksu, Z. (1999), "The effect of copper (II) ions on growth and bioaccumulation properties of some yeasts", Process Biochem., 35(1-2), 135-142. https://doi.org/10.1016/S0032-9592(99)00044-8
  11. Faiyas, A.P.A., Vinod, E.M., Joseph, J., Ganesan, R. and Pandey, R.K. (2010), "Dependence of pH and surfactant effect in the synthesis of magnetite ($Fe_3O_4$) nanoparticles and its properties", J. Magnet. Magnet. Mater., 322(4), 400-404. https://doi.org/10.1016/j.jmmm.2009.09.064
  12. Ho, Y.S. (2003), "Removal of copper ions from aqueous solution by tree fern", Water Res., 37(10), 2323-2330. https://doi.org/10.1016/S0043-1354(03)00002-2
  13. Ho, Y.S., Wase, D.A.J. and Forster, C.F. (1996), "Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat", Environ. Technol., 17(1), 71-77. https://doi.org/10.1080/09593331708616362
  14. Huang, Y.H., Hsueh, C.L., Cheng, H.P., Su, L.C. and Chen, C.Y. (2007), "Thermodynamics and kinetics of adsorption of Cu (II) onto waste iron oxide", J. Hazard. Mater., 144(1-2), 406-411. https://doi.org/10.1016/j.jhazmat.2006.10.061
  15. Hu, J., Lo, I.M.C. and Chen, G. (2004), "Removal of Cr (VI) by magnetite nanoparticle", Water Sci. Technol., 50(12),139-142.
  16. Jain, T.K., Morales, M.A., Sahoo, S.K., Leslie-Pelecky, D.L. and Labhasetwar, V. (2005), "Iron oxide nanoparticles for sustained delivery of anticancer agents", Mol. Pharm., 2(3), 194-205. https://doi.org/10.1021/mp0500014
  17. Jana, N.R., Chen, Y. and Peng, X. (2004), "Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach", Chem. Mater., 16(20), 3931-3935. https://doi.org/10.1021/cm049221k
  18. Jha, M.K., Kumar, V., Maharaj, L. and Singh, R. (2004), "Studies on leaching and recycling of zinc from rayon waste sludge", J. Ind. Eng. Chem. Res., 43,1284-1295. https://doi.org/10.1021/ie020949p
  19. Jha, M.K., Upadhyay, R.R., Lee, J.C. and Kumar, V. (2008), "Treatment of rayon waste effluent for the removal of Zn and Ca using Indion BSR resin", Desalination, 228(1-3), 97-107. https://doi.org/10.1016/j.desal.2007.08.010
  20. Kang, Y.S., Risbud, S., Rabolt, J.F. and Stroeve, P. (1996), "Synthesis and characterization of nanometersize $Fe_3O_4$ and ${\gamma}−Fe_2O_3$ particles", Chem. Mater., 8(9), 2209-2211. https://doi.org/10.1021/cm960157j
  21. Kentish, S.E. and Stevens, G.W. (2001), "Innovations in separations technology for the recycling and re-use of liquid waste streams", J. Chem. Eng., 84(2), 149-159. https://doi.org/10.1016/S1385-8947(01)00199-1
  22. Kim, D.K., Zhang, Y., Voit, W., Rao, K.V. and Muhammed, M. (2001), "Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles", J. Magnet. Magnet. Mater., 225(1-2), 30-36. https://doi.org/10.1016/S0304-8853(00)01224-5
  23. Lagergren, S. (1898), "Zur theorie der sogenannten adsorption geloster stoffe", Handl., 24, 1-39.
  24. Langford, J.I. and Wilson, A.J.C. (1978), "Scherrer after sixty years: A survey and some new results in the determination of crystallite size", J. Appl. Crystallogr., 11, 102-103. https://doi.org/10.1107/S0021889878012844
  25. Lida, H., Takayanagi, K., Nakanishi, T. and Osaka, T. (2007), "Synthesis of $Fe_3O_4$ nanoparticles with various sizes and magnetic properties by controlled hydrolysis", J. Colloid Interf. Sci., 314(1), 274-280. https://doi.org/10.1016/j.jcis.2007.05.047
  26. Lim, S., Woo, E., Lee, H. and Lee, C. (2008), "Synthesis of magnetite-mesoporous silica composites as adsorbents for desulfurization from natural gas", Appl. Catal. B: Environ., 85(1-2), 71-76. https://doi.org/10.1016/j.apcatb.2008.06.028
  27. Liu, Z.L., Wang, X., Yao, K.L., Du, G.H., Lu, Q.H., Ding, Z.H., Tao, J., Ning, Q., Luo, X.P., Tian, D.Y. and Xi, D. (2004), "Synthesis of magnetite nanoparticles in W/O microemulsion", J. Mater. Sci., 39(7), 2633-2636. https://doi.org/10.1023/B:JMSC.0000020046.68106.22
  28. Maity, D. and Agrawal, D.C. (2007), "Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media", J. Magnet. Magnet. Mater., 308(1), 46-55. https://doi.org/10.1016/j.jmmm.2006.05.001
  29. Marmier, N., Delisee, A. and Fromage, F. (1999), "Surface complexation modeling of Yb (III), Ni (III) and Cs (I) sorption on magnetite", J. Colloid Interf. Sci., 211(1), 54-60. https://doi.org/10.1006/jcis.1998.5968
  30. Massart, R. (1981), "Preparation of aqueous magnetic liquids in alkaline and acidic media", IEEE Trans. Magn., 17(2), 1247-1248. https://doi.org/10.1109/TMAG.1981.1061188
  31. Mera Martínez, I., Espinosa-Pesqueira, M.E., Perez-Hernandez, R. and Arenas-Alatorre, J. (2007), "Synthesis of magnetite ($Fe_3O_4$) nanoparticles without surfactants at room temperature", Mater. Lett., 61(23-24), 4447-4451. https://doi.org/10.1016/j.matlet.2007.02.018
  32. Miller, M.M., Prinz, G.A., Cheng, S.F. and Bounnak, S. (2002), "Detection of a micronsized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magneto resistance-based biosensor", Appl. Phys. Lett., 81, 2211-2213. https://doi.org/10.1063/1.1507832
  33. Novakova, A.A., Lanchinskaya, V.Y., Volkov, A.V., Gendler, T.S., Kiseleva, T.Y., Moskvina, M.A., Zezin, S.B. (2003), "Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles", J. Magnet. Magnet. Mater., 258-259, 354-357. https://doi.org/10.1016/S0304-8853(02)01062-4
  34. Oncel, M.S. (2008), "Adsorption of copper (II) from aqueous solution by Beidellite", Environ. Geol., 55(8), 1767-1775. https://doi.org/10.1007/s00254-007-1127-6
  35. Patterson, W. (1985), Industrial Wastewater Treatment Technology, Butterworth, Boston, MA, USA.
  36. Peterson, M.L., White, A.F., Brown, G.E. and Parks, G.A. (1997), "Surface passivation of magnetite by reaction with aqueous Cr (VI): XAFS and TEM results", Environ. Sci. Technol., 31(5), 1573-1576. https://doi.org/10.1021/es960868i
  37. Podzus, P.E., Debandi, M.V. and Daraio, M.E. (2012), "Copper adsorption on magnetite-loaded chitosan microspheres: Akinetic and equilibrium study", Physica B, 407(16), 3131-3133. https://doi.org/10.1016/j.physb.2011.12.044
  38. Racuciu, M. (2009), "Synthesis protocol influence on aqueous magnetic fluid properties", Current Appl. Phys., 9(5), 1062-1066. https://doi.org/10.1016/j.cap.2008.12.003
  39. Sparks, D.L. (2005), "Toxic metals in the environment: The role of surfaces", Elements, 1(4), 193-197. https://doi.org/10.2113/gselements.1.4.193
  40. Tartaj, P., Morales, M.P., Verdaguer, S.V., Carreno, T.G. and Serna, C.J. (2003), "The preparation of magnetic nanoparticles for applications in biomedicine", J. Phys., 36, 182-197.
  41. Xu, X.Q., Shen, H., Xu, J., Li, X.J. and Xiong, X.M. (2005), "Core-shell structure and magnetic properties of magnetite magnetic fluids stabilized with dextran", Appl. Surf. Sci., 252(2), 494-500. https://doi.org/10.1016/j.apsusc.2005.01.027
  42. Wang, Q., Wei, S. and Huang, Y. (2007), "Adsorption characteristics of amorphous $Fe_2O_3$ and humic acid complex colloid to $Cu^{2+}$", Chin. Environ. Sci., 27, 752-756.
  43. Wang, S., Zhang, J., Dou, S., Wang, Y. and Xie, Z. (2008), "Adsorption of Cu (II) on synthetic Fe, Mn, Al-oxides minerals and its influencing factors", J. Agron. Environ. Sci., 27, 937-943.
  44. Wang, X.S., Zhu, L. and Lu, H.J. (2011), "Surface chemical properties and adsorption of Cu (II) on nanoscale magnetite in aqueous solutions", Desalination, 276(1-3), 154-160. https://doi.org/10.1016/j.desal.2011.03.040
  45. Wiatrowski, H.A., Das, S., Kukkadapu, R., Ilton, E., Barkay, T. and Yee, N. (2009), "Reduction of Hg (II) to Hg (0) by magnetite", Environ. Sci. Technol., 43(14), 5307-5313. https://doi.org/10.1021/es9003608

피인용 문헌

  1. Equilibrium and kinetic studies on the adsorption of copper onto carica papaya leaf powder vol.7, pp.5, 2016, https://doi.org/10.12989/mwt.2016.7.5.403
  2. A comparative study of granular activated carbon and sand as water filtration media with estimation of model parameters vol.6, pp.1, 2015, https://doi.org/10.12989/aer.2017.6.1.035
  3. A simple and rapid approach to modeling chromium breakthrough in fixed bed adsorber vol.7, pp.1, 2015, https://doi.org/10.12989/aer.2018.7.1.029
  4. Destruction of Cyanide and Removal of Copper from Waste Printed Circuit Boards Leach Solution Using Electro-Generated Hypochlorite Followed by Magnetite Adsorption vol.9, pp.9, 2015, https://doi.org/10.3390/met9090963
  5. Removal of Copper Ions from Aqueous Solution Using Waste Mill Scales vol.307, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/ssp.307.247