DOI QR코드

DOI QR Code

A Study of Subspacing Strategy for Service Applications in Indoor Space

실내공간 응용 서비스를 위한 공간분할 방법에 관한 연구

  • Received : 2015.05.04
  • Accepted : 2015.06.30
  • Published : 2015.06.30

Abstract

Recently, according to developing advanced construction technologies, buildings has been enlarged such as high-rise buildings or complex buildings associated with underground facilities. The number of indoor activity population has increased very quickly. Because of that, technical requirements for Indoor location based service (Indoor LBS) also have been increased. Although indoor networks have to be constructed for efficient LBSs in indoor space based on OGC IndoorGML, it is not suitable for large and complex space to apply the simple network structure to constructing indoor navigation networks. The indoor navigation network has to be constructed according to logical, physical, and functional constraints for indoor space. In order to do that, subspacing methods are required to partition large and complex indoor space into proper size of subspace. In this paper, we proposed the basic requirements of subspacing in indoor space for creating efficient indoor network, as well the work process of subspacing in indoor space.

최근 건축기술의 발달에 따라 초고층 건축물 및 지하시설물과 연계된 복합건축물 등과 같이 건축물들이 대형화 되고 있으며, 실내에서 활동하는 인구도 함께 증가하고 있다. 이에 따라 실내공간정보를 이용한 위치 기반서비스에 대한 요구도 증가하고 있다. 실내공간에서 효과적인 위치기반서비스를 위해 OGC IndoorGML 표준에 따라 실내 네트워크가 구축되고 있다. 하지만, 크고 복잡한 실내공간에 대해 단순한 네트워크 구조를 적용하여 실내 네트워크를 구축하는 것은 적합하지 않다. 실내 네트워크는 실내공간에서 주어지는 논리적, 물리적, 기능적 제약조건들을 잘 반영하여 구축되어야 하며, 공간간의 연결정보와 기하정보도 제공해야하기 때문이다. 이를 위해서는, 크고 복잡한 실내 공간을 적절한 크기의 공간으로 분할하는 방법이 필요하다. 이에 본 연구에서는 효과적인 실내네트워크를 생성하기 위해 필요한 실내공간 분할 요구사항을 정리하고 그에 따른 실내공간 분할 프로세스를 제시하였다.

Keywords

References

  1. Bulusu, N; Heidemann, J; Estrin, D. 2001, Adaptive beacon placement, Paper presented at Proc. International Conference on Distributed Computing Systems, Arizona, April 16-19.
  2. Franz, A. 1991, Voronoi diagrams: A Survey of a Fundamental Geometric Data Structure, ACM Computing Survey, 23(3):345-405. https://doi.org/10.1145/116873.116880
  3. Kawk S. Y; Nam, H. W; Jun, C. M. 2010, An Indoor Pedestrian Simulation Model Incorporating the Visibility, Journal of Korea Spatial Information Society, 18(5):133-142.
  4. Khan., A. A; Kolbe, T. H. 2012, Constraints and their role in spacing for the locomotion types in indoor navigation, Paper presented at Proc. International conference on indoor positioning and indoor navigation, Sydney, November 13-15.
  5. Khan., A. A; Kolbe, T. H. 2013, spacing Based on Connected Opening Spaces and for Different Locomotion Types Using Geometric and Graph Based Representation in Multilayered Space-Event Model(MLSEM), Paper presented at the ISPRS annals of photogrammetry, remote sensing and spatial information sciences, Istanbul, November 27-29.
  6. Kruminaite, M; Zlatanova, S. 2014, Indoor Space division for Indoor Navigation, Paper presented at Proc. Sixth ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, Dallas, November 4-7.
  7. Lee, S. J; Lee, J. 2011, Navigable Space-Relation Model for Indoor Space Analysis, Journal of Geographic Information System Association of Korea, 19(5):75-86.
  8. Lin, Z; Zhang, S; Yan, G. 2013, An incremental deployment algorithm for wireless sensor network using one of multiple autonomous agents, Ad Hoc Networks, 11(1):355-367. https://doi.org/10.1016/j.adhoc.2012.06.009
  9. Mukhopadhyay, A; Roy, S: Mukherjee, N. 2012, An approach of beacon placement and beacon based routing towards mobile sink in WSN, Paper presented at the Proc. the CUBE International Information Technology Conference, Maharshtra, September 3-5.
  10. Open Geospatial Consortium, 2014, IndoorGML v.1.0, OGC, Accessed June 2, http://docs.opengeospatial.org/is/14-005r3/14-005r3.html
  11. Stoffel, E. P; Lorenz, B; Ohlbach, H. J. 2007, Towards a Semantic Spatial Model for Pedestrian Indoor Navigation, Advances in Conceptual Modeling-Foundations and Applications, Springer Berlin Heidelberg, pp. 328-337.
  12. Wang, G; Cao, G; La Porta, T. 2006, Movementassisted sensor deployment, Mobile Computing, IEEE Transaction on, 5(6):640-652.
  13. Wang, Y. C; Hu, C. C; Tseng, Y. C. 2005, Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks, Paper presented at Wireless Internatinal Conference, Budapest, July 10-15.
  14. Yuan, Z; Li, W; Zhu, J; Zhao, W. 2015, A Costefficiency Method on Beacon Node Placement for Wireless Localization, Paper presented at International Conference on Computing, Networking and Communications, California, February 16-19.
  15. Zlatanova, S; Liu, L; Sithole, G. 2013, A Conceptual Framework of Space division for Indoor Navigation, Paper presented at Proc. the Fifth ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, Orlando, November 05-08.

Cited by

  1. Using Omnidirectional Images for Semi-Automatically Generating IndoorGML Data vol.36, pp.5, 2015, https://doi.org/10.7848/ksgpc.2018.36.5.319
  2. 다트판형 공간분할 기법을 이용한 서울지역 지하철 역세권 분석 vol.17, pp.4, 2015, https://doi.org/10.9716/kits.2018.17.4.139
  3. Generation of navigation networks for corridor spaces based on indoor visibility map vol.34, pp.1, 2020, https://doi.org/10.1080/13658816.2019.1664741
  4. Determining Spatial Neighborhoods in Indoor Space using Integrated IndoorGML and IndoorPOI data vol.38, pp.5, 2020, https://doi.org/10.7848/ksgpc.2020.38.5.467
  5. Defining a Model for Integrating Indoor and Outdoor Network Data to Support Seamless Navigation Applications vol.10, pp.8, 2015, https://doi.org/10.3390/ijgi10080565