DOI QR코드

DOI QR Code

Effect of Mixed Ratios of Ground Improvement Material using Microorganisms on the Strength of Sands

미생물을 활용한 지반개량제의 혼합비율에 따른 사질토의 강도개선 효과

  • Received : 2015.03.12
  • Accepted : 2015.03.31
  • Published : 2015.06.30

Abstract

In this study, the objective of the study is to evaluate the effect of calcium carbonate powder, produced by the microbial reactions, on the strength of soft ground (sand). To analyze the cementation effects of calcium carbonate powder produced by microbial reactions on the strength of the sand, six different types of specimens (untreated, calcium carbonate, cement, carbonate+cement (1:9, 3:7, 5:5)) were made. The specimen were tested after curing (7 and 28 days). Uniaxial compressive strengths were measured on $D5cm{\times}H10cm$ specimens. Based on the test results, as both the weight ratio and the curing period increase, calcium carbonate, cement, and calcium carbonate+cement specimens showed an increase in the strength. In addition, compared with the strength of the specimen with cement, the strengths of the specimens with mixing ratios of 1:9, 3:7, and 5:5 (carbonate : cement) were found to be 93.5~95.8%, 825.%, 65.2~70.6%.

본 연구에서는 미생물 반응으로 생성된 탄산칼슘을 분말로 제작하여 연약지반(모래)의 강도 증진 효과를 확인하고자 하였다. 미생물반응으로 생성된 탄산칼슘의 고결화 효과를 분석하기 위해 6가지 case(무처리, 탄산칼슘, 시멘트, 탄산칼슘+시멘트(1:9, 3:7, 5:5))를 모래 중량비에 따라 고결제를 달리(4%, 8%)하여 양생후(7일, 28일) 실험을 하였다. 또한 현장여건과 비슷한 조건의 실험을 하기 위해서 중량비에 따라 세립분(0%, 5%, 15%)를 추가하여 $D5cm{\times}H10cm$ 공시체로 성형한 후 일축압축강도를 측정하였다. 그 결과, 중량비와 양생일이 증가할수록 탄산칼슘, 시멘트, 탄산칼슘+시멘트 모두 강도가 증가하는 경향을 확인하였다. 또한 시멘트 강도 대비 중량비 1:9, 3:7, 5:5의 탄산칼슘+시멘트 강도를 비교한 결과 각각 93.5~95.8%, 82.5%, 65.2~70.6%로 나타났다.

Keywords

References

  1. Chang, I. and Cho G. C. (2012), "Strengthening of Korean Residual Soil with b-1,3/1,6-glucan Biopolymer", Construction and Building Materials, Vol.30, pp.30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030
  2. Dejong, J. T., Fritzges, M. B., and Nusslein, K. (2006). "Microbially Induced Cementation to Control Sand Response to Undrained Shear", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.11, pp.1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
  3. Dejong, J. T., Mortensen, B. M., Martinez, B. C. and Nelson, D. C. (2010). "Bio-mediated Soil Improvement", Journal of Ecological Engineering, Vol.36, pp.197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029
  4. Fei, H. C. (1991), "The Characteristics of Liquefaction of Silt Soil", Ground Improvement, Vol.8, No.1, pp.1-5. https://doi.org/10.1680/grim.2004.8.1.1
  5. Kim, D. H., Park, K. H., Kim, S. W., and Mun, S. H. (2012). "A Novel Approach to Induce Cementation of Loose Soils.", Advanced Science Letters, Vol.9, pp.545-550. https://doi.org/10.1166/asl.2012.2649
  6. Kim, D. H.. and Park, K. H. (2013). "Injection Effect of Bio-Grout Soft Ground.", Advanced Science Letters, Vol.19, pp.468-472. https://doi.org/10.1166/asl.2013.4757
  7. Kwak, T. W. and Kim, H. G. (2003), Social Cost-benefit Analysis of Lapaz-Hanla Limestone Development Project, Ministry of Environment Report. pp.1-49.
  8. Law, K. T. and Ling, Y. H. (1992), "Liquefaction of Granular Soils with Non-cohesive and Cohesive Fines", Proceedings of the 10th World Conference on Earthquake Engineering, Rotterdam, pp.1491-1496.
  9. Lee, J. H., Hong, J. O., Jin Y. and Chun, B. S. (2012), "The Evaluation of the Field Applicability of the Soil Improving Method Using the Environment-friendly Organic Acid Material", Journal of Korean Geotechnical Society, Vol.28, No.9, pp. 85-95. https://doi.org/10.7843/kgs.2012.28.9.85
  10. Mitchell, J. K., and Santamarina, J. C. (2005). "Biological Considerations in Geotechnical Engineering." Journal of Geotechnical and Geoenviromental Engineering, Vol.131, No.10, pp.1222-1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)
  11. Paassen, L. A., Harkes, M. P., Zwieten, G. A., Zon, W. H., Star, W. R. L., and Loosdrecht, M. C. M., (2009). "Scale Up of Biogrout: A Biological Ground Reinforcement Method." Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, pp.2328-2333.
  12. Park, B. G. and Lee, G. C. (1999), "Evaluation Methods of Weathering Degree for Korean Decomposed Granite Soils", Journal of Korean Geotechnical Society, Vol.15, No.1, pp. 127-141.
  13. Park, K. H. (2011), Strength Improvement of Soft Soil using Soft Soil, MS, Thesis, Chosun University, Korea.
  14. Park, K. H. and Kim, D. H. (2012), "Identification of Calcium Carbonate for Silt and Sand Treated with Bacteria", Journal of Korean Geotechnical Society, Vol.28, No.6, pp. 53-61. https://doi.org/10.7843/kgs.2012.28.6.53
  15. Park, K. H and Kim, D. H. (2013), "Effect of Strength and Injection for the Sand Treated Bacteria", Journal of Korean Geotechnical Society, Vol.29, No.2, pp.65-73. https://doi.org/10.7843/kgs.2013.29.2.65
  16. Park, S. K. (2010), A Study on Characteristics of Soil-Cement with Fine Contents, MS, Thesis, Jeonnam University, Korea.
  17. Park, S. S., Choi, S. K. and Nam, I. H. (2012), "Development of Ground Cement using Plant Extract", Journal of Korean Geotechnical Society, Vol.28, No.3, pp.67-75. https://doi.org/10.7843/kgs.2012.28.3.67
  18. Park, S. S., Kim, K. Y., Kim, C. W. and Choi, H. S. (2010), "Strength Variation of Cemented Sand Due to Wetting", KSCE Journal of Civil Engineering, Vol.29, No.6, pp. 303-311.
  19. Soon, N. W., Lee, M. L., Khun T. C. and Ling, H. S. (2013), "Improvements in Engineering Properties of Soils through Microbial-Induced Calcite Precipitation", KSCE Journal of Civil Engineering, Vol.17, No.4, pp.718-728. https://doi.org/10.1007/s12205-013-0149-8
  20. Whiffin, V. S., Paassen, L. A., and Harkes, M.. P. (2007). "Microbial Carbonate Precipitation as a Soil Improvement Technique", Geomicrobiology Journal, Vol.24, pp.1-7. https://doi.org/10.1080/01490450601134275