DOI QR코드

DOI QR Code

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan (School of Electronic & Mechanical Engineering, Xidian University) ;
  • Qian, Yu (School of Electronic & Mechanical Engineering, Xidian University) ;
  • Chen, Jianjun (School of Electronic & Mechanical Engineering, Xidian University) ;
  • Song, Gangbing (Department of Mechanical Engineering, University of Houston)
  • Received : 2014.02.24
  • Accepted : 2015.06.20
  • Published : 2015.07.10

Abstract

H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

Keywords

References

  1. Belouettar, S. and Azrar, L. (2008), "Active control of nonlinear vibration of sandwich piezoelectric beams: A simplified approach ", Comput. Struct., 86, 386-397. https://doi.org/10.1016/j.compstruc.2007.02.009
  2. Balas, M.J. (1978), " Feedback control of flexible systems", IEEE T. Automat. Contr., 23(4), 673-679. https://doi.org/10.1109/TAC.1978.1101798
  3. Bala, G.L. (1995), "Control design for variation in structural natural frequencies", J. Guid. Contrl. Dyn., 18(2), 325-332. https://doi.org/10.2514/3.21387
  4. Bodaghi, M., Damanpack, A.R., Aghdam, M.M. and Shakeri, M. (2012), " Non-linear active control of FG beams in thermal environments subjected to blast loads with integrated FGP sensor/actuator layers", Compos. Struct., 94, 3612-3623. https://doi.org/10.1016/j.compstruct.2012.06.001
  5. Bruant, I. and Gallimard, L. (2010), "Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm ", J. Sound Vib., 329, 1615-1635. https://doi.org/10.1016/j.jsv.2009.12.001
  6. Caracciolo, D., Richiedei, D. and Trevisani, A. (2005), "Robust mixed-norm position and vibration control of flexible link mechanisms", Mechatronics, 15, 767-791. https://doi.org/10.1016/j.mechatronics.2005.03.001
  7. Chen, S.H., Song, M. and Dong, Y (2007), "Robustness analysis of responses of vibration control structures with uncertain parameters using interval algorithm", Struct. Saf., 29, 94-111. https://doi.org/10.1016/j.strusafe.2006.03.001
  8. Damanpack, A.R., Bodaghi, M., Aghdam, M.M. and Shakeri, M. (2013), "Active control of geometrically non-linear transient response of sandwich beams with a flexible core using piezoelectric patches", Compos. Struct., 100, 517-531. https://doi.org/10.1016/j.compstruct.2012.12.029
  9. Fogel, D.B. (1994), "An introduction to simulated evolutionary optimization", IEEE T. Neural Networ., 5(1), 3-14. https://doi.org/10.1109/72.265956
  10. Gao, W. and Chen, J.J. (2003), "Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters", Comput. Struct., 81(1), 53-60. https://doi.org/10.1016/S0045-7949(02)00331-0
  11. Gawronski, W. (1996), Balanced Control of Flexible Structures, Berlin, Springer.
  12. Gasbarri, P., Monti, P. and Sabatini, M. (2014), "Very large space structures: Non-linear control and robustness to structural uncertainties", Acta Astronaut., 93, 252-265 https://doi.org/10.1016/j.actaastro.2013.07.022
  13. Karimi, H.R., Zapateiro, M. and Luo, N.S. (2008), "Robust mixed $H_2/H_{\infty}$ delayed state feedback control of uncertain neutral systems with time-varying delays", Asian J. Control, 10(5), 569-580. https://doi.org/10.1002/asjc.57
  14. Kapuria, S. and Yaqoob, Y.M. (2010), "Active vibration control of piezoelectric laminated beams with electroded actuators and sensors using an efficient finite element involving an electric node", Smart. Mater. Struct., 19, 5004-5019.
  15. Lin, J. and Zheng, Y.B. (2012), "Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning", J. Sound Vib., 331, 3677-3694. https://doi.org/10.1016/j.jsv.2012.04.001
  16. Meirovitch, L. and Baruh, H. (1983), "A comparison of control techniques for large flexible systems", J. Guid. Contrl Dyn., 6(4), 302-310. https://doi.org/10.2514/3.19833
  17. Morales, A.L., Rongong, J.A. and Sims, N.D. (2012), "A finite element method for active vibration control of uncertain structures", Mech. Syst. Signal Pr., 32, 79-93. https://doi.org/10.1016/j.ymssp.2011.09.027
  18. Qiu, Z.Q. and Wu, H.X. (2009), "Acceleration sensors based modal identification and active vibration control of flexible smart cantilever plate proportional feedback control", Aeros. Sci. Tech., 13, 277-290. https://doi.org/10.1016/j.ast.2009.05.003
  19. Tavakolpour, A.R., MatDarus, I.Z. and Tokhi, O. (2010), "Genetic algorithm-based identification of transfer function parameters for a rectangular flexible plate system", Eng. Appl. Artif. Intel., 23, 1388-1397. https://doi.org/10.1016/j.engappai.2010.01.005
  20. Rittenschober, T. and Schlacher, K. (2012), "Observer-based self sensing actuation of piezoelastic structures for robust vibration control", Automatica, 48(6),1123-1131 https://doi.org/10.1016/j.automatica.2012.02.038
  21. Samuel, D.S. and Vicente, L.J. (2006), "Design of a Control System using Linear Matrix Inequalities for the Active Vibration Control of a Plate", J. Intel. Mat. Syst. Struct., 17(1), 81-93. https://doi.org/10.1177/1045389X06056341
  22. Sana, S. and Rao, V.S. (2000), "Application of linear matrix inequalities in the control of smart structural systems", J. Intel. Mat. Syst. Struct., 11, 321-323.
  23. Schulz, S.L., Gomes, H.M. and Awruch, A.M. (2013), "Optimal discrete piezoelectric patch allocation on composite structures for vibration control based on GA and modal LQR", Comput. Struct., 128, 101-115. https://doi.org/10.1016/j.compstruc.2013.07.003
  24. Song, G. and Sethi, V. (2006), "Vibration control of civil structures using piezoceramic smart materials: A review", Eng. Struct., 28, 1513-1524. https://doi.org/10.1016/j.engstruct.2006.02.002
  25. Tavakolpour, A.R., Mailah, M. and Darus, I.Z. (2010), "Self-learning active vibration control of a flexible plate structure with piezoelectric actuator", Simul. Model. Pract. Theory, 18, 516-532. https://doi.org/10.1016/j.simpat.2009.12.007
  26. Vasques, C.M.A. and Rodrigues, J.D. (2006), "Active vibration control of smart piezoelectric beams:Comparison of classical and optimal feedback control strategies", Comput. Struct., 84, 1402-1414. https://doi.org/10.1016/j.compstruc.2006.01.026
  27. Xu, B. and Ou, J.P. (2013), "Integrated optimization of structural topology and control for piezoelectric smart plate based on genetical algorithm", Finite Eleme. Anal. Des., 64, 1-12. https://doi.org/10.1016/j.finel.2012.09.004
  28. Xu, Y.L. and Chen, J.J. (2008), "Modal-based model reduction and vibration control for uncertain piezoelectric flexible structures", Struct. Eng. Mech., 29(5), 489-504. https://doi.org/10.12989/sem.2008.29.5.489
  29. Yang, C.D. and Sun, Y.P. (2002), "Mixed $H_2/H_{\infty}$ state-feedback design for microsatellite attitude control", Control Eng. Pract., 10, 951-970. https://doi.org/10.1016/S0967-0661(02)00049-7
  30. Zhang, X. and Shao, C. (2001), " Robust $H_{\infty}$ vibration control for flexible linkage mechanism systems with piezoelectric sensors and actuators" , J. Sound Vib., 243, 145-155. https://doi.org/10.1006/jsvi.2000.3413

Cited by

  1. Numerical Analysis and Optimization on Piezoelectric Properties of 0–3 Type Piezoelectric Cement-Based Materials with Interdigitated Electrodes vol.7, pp.3, 2017, https://doi.org/10.3390/app7030233
  2. Active vibration robust control for FGM beams with piezoelectric layers vol.67, pp.1, 2015, https://doi.org/10.12989/sem.2018.67.1.033
  3. Debonding Damage Detection in CFRP Plate-Strengthened Steel Beam Using Electromechanical Impedance Technique vol.19, pp.10, 2019, https://doi.org/10.3390/s19102296