DOI QR코드

DOI QR Code

Secretion of the iron containing superoxide dismutase of Streptomyces subrutilus P5

Streptomyces subrutilus P5가 생산하는 철 함유 superoxide dismutase의 분비

  • Received : 2015.05.26
  • Accepted : 2015.06.15
  • Published : 2015.06.30

Abstract

We tried to analyze the growth time for secretion of the iron containing superoxide dismutase by comparing the intra-and extracellular enzyme activity from Streptomyces subrutilus P5 and analyze possible genetic information for this enzyme secretion. The mycelial dry weights and glucose concentrations in culture filtrates were determined during growth. Glucose was consumed rapidly during logarithmic growth phase and almost exhausted at 24 h of cultivation. While the intracellular activity of iron containing superoxide dismutase was first appeared at three hours, the extracellular activity of this enzyme appeared from 7.5 h of cultivation, early logarithmic growth phase. This early presence of the superoxide dismutase might not be the result of cell lysis but active secretion pathway. There was no information for signal peptide responsible for the enzyme secretion in sodF. However, we found a type three secretion box in the promoter region of sodF that has been known for the genes of type III secreted proteins in other bacteria. This is the first report on the possible existence of type III secretion in Streptomyces.

본 연구에서는 Streptomyces subrutilus P5의 생장과 세포내 외 철 함유 superoxide dismutase 활성을 비교 분석하여 철함유 superoxide dismutase의 분비 시점을 확인하고 분자 수준에서 이 효소의 분비에 관여하는 유전정보를 확인하고자 하였다. Streptomyces subrutilus P5의 균체 생장은 건체 중량을 측정하여 결정하였다. Glucose는 log phase에서 급격히 소모되어 24시간 후에 이르러 완전히 고갈되었다. 세포내의 철 함유 superoxide dismutase는 배양 후 3시간에 나타나며 세포외 철 함유 superoxide dismutase는 배양 후 7.5시간부터 나타난다. 따라서 superoxide dismutase는 용균에 의해서가 아니라 능동적인 분비기작에 의해서 세포 외로 분비된 것으로 추측할 수 있다. Streptomyces subrutilus P5의 sodF에는 signal peptide 유전정보가 존재하지 않았다. 그러나 sodF의 상류지역에서 다른 세균의 type III 분비단백질 유전자와 유사한 type III 분비상자가 발견되었다. Streptomyces 균주에서 type III 분비단백질이 존재할 가능성이 있음을 처음으로 제시하였다.

Keywords

References

  1. Ananthalakshmy, V.K. and Gunasekaran, P. 1999. Overperoduction of levan in Zymomonas mobilis by using cloned sacB gene. Enzyme Microb. Technol. 25, 109-115. https://doi.org/10.1016/S0141-0229(99)00018-6
  2. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  3. Bendtsen, J.D., Jensen, L.J., Blom, N., Heijne, G.V., and Brunak, S. 2005. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17, 349-356.
  4. Bibb, M.J. 2013. Understanding and manipulating antibiotic productionin actinomycetes. Biochem. Soc. T. 41, 1355-1364. https://doi.org/10.1042/BST20130214
  5. Braunstein, M., Espinosa, B., Chan, J., Belisle, J.T., and Jacobs Jr., W.R. 2003. SecA2 functions in seretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol. Microbiol. 48, 453-464. https://doi.org/10.1046/j.1365-2958.2003.03438.x
  6. Chung, H.J., Kim, E.J., Suh, B., Choi, J.H., and Roe, J.H. 1999. Duplication genes Fe-containing superoxide dismutase in Streptomyces coelicolor A3(2). Gene 231, 87-93. https://doi.org/10.1016/S0378-1119(99)00088-8
  7. Hale, V.A. and Schottle, J.L. 1996. Mutational analysis of the Streptomyces scabies esterase signal peptide. Appl. Microbiol. Biotechnol. 45, 189-198. https://doi.org/10.1007/s002530050669
  8. Joshi, M.V., Mann, S.G., Antelmann, H., Widdick, D.A., Fyans, J.K., Chandra, G., Hutchings, M.I., Toth, I., Hecker, M., Loria, R., et al. 2010. The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies. Mol. Microbiol. 77, 252-271. https://doi.org/10.1111/j.1365-2958.2010.07206.x
  9. Kim, J., Han, K., Jung, H., and Lee, J. 2014. Iron containing superoxide dismutase of Streptomyces subrutilus P5 increases bacterial heavy metal resistance by sequestration. Korean J. Microbiol. 50, 179-184. https://doi.org/10.7845/kjm.2014.4053
  10. Kim, J.S., Jang, J.H., Lee, J.W., Kang, S.O., Kim, K.S., and Lee, J.K. 2000. Identification of cis site involved in nickel-responsive transcriptional repression of sodF gene coding for Fe- and Zn-containing superoxide dismutase of Streptomyces griseus. Biochim. Biophys. Acta. 1493, 200-207. https://doi.org/10.1016/S0167-4781(00)00178-0
  11. Kondo, Y., Toyoda, A., Fukushi, H., Yanase, H., Tonomura, K., Kawasaki, H., and Sakai, T. 1994. Cloning and characterization of a pair of genes that stimulate the production and secretion of Zymomonas mobilis extracellular levansucrase and invertase. Biosci. Biotechnol. Biochem. 58, 526-530. https://doi.org/10.1271/bbb.58.526
  12. Krehenbrink, M., Edwards, A., and Downie, J.A. 2011. The superoxide dismutase SodA is targeted to the periplasm in a SecA-dependent manner by a novel mechanism. Mol. Microbiol. 82, 164-179. https://doi.org/10.1111/j.1365-2958.2011.07803.x
  13. Lammertyn, E. and Anne, J. 1998. Modifications of Streptomyces signal peptides and their effects on protein production and secretion. FEMS Microbiol. Lett. 160, 1-10. https://doi.org/10.1111/j.1574-6968.1998.tb12882.x
  14. Leclere, V., Boiron, P., and Blondeau, R. 1999. Diversity of superoxide-dismutases among clinical and soil isolates of Streptomyces species. Curr. Microbiol. 39, 365-0368. https://doi.org/10.1007/s002849900473
  15. Madden, J.C., Ruiz, N., and Caparon, M. 2001. Cytolysin-mediated translocation (CMT): A functional equivalent of type III secretion in Gram-positive bacteria. Cell 104, 143-152. https://doi.org/10.1016/S0092-8674(01)00198-2
  16. Park, B.S., Vladimir, A., Kim, C.H., Rhee, S.K., and Kang, H.A. 2003. Secretory production of Zymomonas mobilis levansucrase by the methylotrophic yeast Hansenula polymorpha. Enzyme Microb. Technol. 34, 132-138.
  17. Pitcher, D.G., Saunders, N.A., and Owen, R.J. 1989. Rapid extraction of bacterial genomic DNA with guannidium thiocyanate. Lett. Appl. Microbiol. 8, 151-156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x
  18. So, N.W., Rho, J.Y., Lee, S.Y., Hancock, I.C., and Kim, J.H. 2001. A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiol. Lett. 194, 93-98. https://doi.org/10.1111/j.1574-6968.2001.tb09452.x
  19. Tseng, T.T., Tyler, B.M., and Sebutal, J.C. 2009. Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol. 9(Suppl 1), S2. https://doi.org/10.1186/1471-2180-9-S1-S2
  20. Widdick, D.A., Dilks, K., Chandra, G., Bottrill, A., Naldrett, M., Pohlschroder, M., and Palmer, T. 2006. The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc. Natl. Acad. Sci. USA 103, 17927-17932. https://doi.org/10.1073/pnas.0607025103
  21. Youn, H.D., Kim, E.J., Roe, J.H., Hah, Y.C., and Kang, S.O. 1996. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem. J. 318, 889-896. https://doi.org/10.1042/bj3180889
  22. Zehner, S., Schober, G., Wenzel, M., Lang, K., and Gottfert, M. 2008. Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Mol. Plant Microbe Interact. 21, 1087-1093. https://doi.org/10.1094/MPMI-21-8-1087