DOI QR코드

DOI QR Code

Enhancement of thermoelectric properties of MBE grown un-doped ZnO by thermal annealing

  • Khalid, Mahmood (Department of Physics, GC University Faisalabad) ;
  • Asghar, Muhammad (Department of Physics, The Islamia University of Bahawalpur) ;
  • Ali, Adnan (Department of Physics, GC University Faisalabad) ;
  • Ajaz-Un-Nabi, M. (Department of Physics, GC University Faisalabad) ;
  • Arshad, M. Imran (Department of Physics, GC University Faisalabad) ;
  • Amin, Nasir (Department of Physics, GC University Faisalabad) ;
  • Hasan, M.A. (Department of Computer and Electrical Engineering)
  • Received : 2015.04.09
  • Accepted : 2015.06.22
  • Published : 2015.06.25

Abstract

In this paper, we have reported an enhancement in thermoelectric properties of un-doped zinc oxide (ZnO) grown by molecular beam epitaxy (MBE) on silicon (001) substrate by annealing treatment. The grown ZnO thin films were annealed in oxygen environment at $500^{\circ}C-800^{\circ}C$, keeping a step of $100^{\circ}C$ for one hour. Room temperature Seekbeck measurements showed that Seebeck coefficient and power factor increased from 222 to $510{\mu}V/K$ and $8.8{\times}10^{-6}$ to $2.6{\times}10^{-4}Wm^{-1}K^{-2}$ as annealing temperature increased from 500 to $800^{\circ}C$ respectively. This observation was related with the improvement of crystal structure of grown films with annealing temperature. X-ray diffraction (XRD) results demonstrated that full width half maximum (FWHM) of ZnO (002) plane decreased and crystalline size increased as the annealing temperature increased. Photoluminescence study revealed that the intensity of band edge emission increased and defect emission decreased as annealing temperature increased because the density of oxygen vacancy related donor defects decreased with annealing temperature. This argument was further justified by the Hall measurements which showed a decreasing trend of carrier concentration with annealing temperature.

Keywords

References

  1. Alam, H. and Ramakrishna, S. (2011), "A review on the enhancement of figure of merit from bulk to nanothermoelectric materials", Nano Energy, 2, 190.
  2. Asghar, M., Mahmood, K. and Hasan, M.A. (2012), "Effect of substrate temperature on the structural and electrical properties of MBE grown ZnO", Key Eng. Mater., 510-511, 132. https://doi.org/10.4028/www.scientific.net/KEM.510-511.132
  3. Asghar, M., Mahmood, K. and Hasan, M.A. (2012), "Investigation of source of n-type conductivity of bulk MBE grown ZnO", Key Eng. Mater., 510, 132.
  4. Asghar, M., Mahmood, K., Adnan, A., Willander, M., Hussain, I. and Hasan, M.A. (2011), "Role of Zninterstitials defects in the ultraviolet emission from ZnO", ECS Tran., 35, 149-154.
  5. Asghar, M., Mahmood, K., Ferguson, I.T., Yasin, A.R., Xie, Y.H., Tsu, R. and Hasan, M.A. (2013), "Investigation of VO-Zni native donor complex in MBE grown bulk ZnO", Semic. Sci. Technol., 28, 105019. https://doi.org/10.1088/0268-1242/28/10/105019
  6. Bera, C., Soulier, M., Navone, C., Roux, G., Simon, J., Volz, S. and Mingo, N. (2006), "Thermoelectric properties of nanostructured Si1-xGexand potential for further improvement", J. Appl. Phys., 108, 124306.
  7. Dmitriev, A.V. and Zvyagin, I.P. (2010), "Current trends in the physics of thermoelectric materials", Phys. Uspekhi, 53, 789-803. https://doi.org/10.3367/UFNe.0180.201008b.0821
  8. Hadia, N., Klason, P., Nur, O., Wahab, Q., Asghar, M. and Willander, M. (2009), "Time-delayed transformation of defects in zinc oxide layers grown along the zinc-face using a hydrothermal technique", J. Appl. Phys., 105, 123510. https://doi.org/10.1063/1.3149800
  9. Janotti, A. and Van de Walle, C.G. (2007), "Native point defects in ZnO", Phys. Rev., 76, 165202. https://doi.org/10.1103/PhysRevB.76.165202
  10. Kinemuchi, Y., Ito, C., Kaga, H., Aoki, T. and Watari, K. (2007), "Thermoelectricity of Al-doped ZnO at different carrier concentrations", J. Mater. Res., 22(7), 1942-1946. https://doi.org/10.1557/jmr.2007.0244
  11. Li, L., Fang, L., Zhou, X.J., Zhao, L. and Jiang, S. (2009), "X-ray photoelectron spectroscopy study and thermoelectric properties of Al-doped ZnO thin films", J. Elect. Spectrosc. Relat. Phenom., 173, 7-11. https://doi.org/10.1016/j.elspec.2009.03.001
  12. McCluskey, M.D. and Jokela, S.J. (2009), "Defects in ZnO", J. Appl. Phys., 106, 071101. https://doi.org/10.1063/1.3216464
  13. Park, K. and Lee, J.H. (2008), "Enhanced thermoelectric properties of NaCo2O4 by adding ZnO", Mater. Let., 62, 2366-2368. https://doi.org/10.1016/j.matlet.2007.11.090
  14. Park, K., Ko, K.Y., Kim, J.G. and Cho, W.S. (2006), "Microstructure and high-temperature thermoelectric properties of CuO and NiO co-substituted $NaCo_2O_4$", Mater. Sci. Eng. B, 129, 200-206. https://doi.org/10.1016/j.mseb.2006.01.018
  15. Park, K., Seong, J.K. and Nahm, S. (2008), "Improvement of thermoelectric properties with the addition of Sb to ZnO", J. Alloy Compound., 455, 331-335. https://doi.org/10.1016/j.jallcom.2007.01.080
  16. Sales, B.C. (2007), "Critical overview of recent approaches to improved thermoelectric materials", Int. J. Appl. Ceram. Technol., 4, 291-296. https://doi.org/10.1111/j.1744-7402.2007.02143.x
  17. Shakouri, A. (2011), "Recent developments in semiconductor thermoelectric physics and materials", Annu. Rev. Mater. Res., 4, 339-431.
  18. Sondergaard, M., Bojesen, E.D., Borup, K.A., Christensen, S., Christensen, M. and Bo, B. (2013), "Sintering and annealing effects on ZnO microstructure and thermoelectric properties", Acta Mater., 61(9), 3314-3323. https://doi.org/10.1016/j.actamat.2013.02.021
  19. Sootsman, J.R., Chung, D.Y. and Kanatzidis, M.G. (2009), "New and old concepts in thermoelectric materials", Angew. Chem. Int. Ed., 48, 8616. https://doi.org/10.1002/anie.200900598
  20. Sun, F., Shan, C.X., Wang, S.P., Li, B.H., Zhang, Z.Z., Zhao, D.X. and Yao, B. (2010), "On the origin of intrinsic donors in ZnO", Appl. Surf. Sci., 256, 3390. https://doi.org/10.1016/j.apsusc.2009.12.040
  21. Synder, G.J. and Eric, S.T. (2008), "Complex thermoelectric materials", Nat. Mater., 7, 105-114. https://doi.org/10.1038/nmat2090
  22. Tritt, T.M. and Subramanian, M.A. (2006), "Thermoelectric materials, phenomena, and applications: a bird's eye view", MRS Bull., 31, 188-194. https://doi.org/10.1557/mrs2006.44
  23. Wang, Y.G., Lau, S.P., Lee, H.W., Yu, S.F., Tay, B.K., Zhang, Z.H. and Hng, H.H. (2010), "Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air", J. Appl. Phys., 94, 354.
  24. Wang, D.W., Zhao, S.L., Xu, Z., Kong, C. and Gong, W. (2011), "The improvement of near-ultraviolet electroluminescence of ZnO nanorods/MEH-PPV heterostructure by using a ZnS buffer layer", Organ. Electron., 12, 92. https://doi.org/10.1016/j.orgel.2010.09.018
  25. Yanzhong, P., LaLonde, A.D., Nicholas, A.H., Shi, X.Y., Shiho, I., Heng, W., Lidong, C. and Synder, G.J. (2011), "Stabilizing the optimal carrier concentration for high thermoelectric efficiency", Adv. Mater., 23, 5674. https://doi.org/10.1002/adma.201103153

Cited by

  1. Optoelectronic properties and Seebeck coefficient in SnSe thin films vol.37, pp.9, 2016, https://doi.org/10.1088/1674-4926/37/9/093002
  2. Laser-based setup for simultaneous measurement of the Seebeck coefficient and electrical conductivity for bulk and thin film thermoelectrics vol.89, pp.11, 2018, https://doi.org/10.1063/1.5035154
  3. Influence of Annealing Treatment on Structural, Optical, Electric, and Thermoelectric Properties of MBE-Grown ZnO vol.126, pp.6, 2018, https://doi.org/10.1134/S1063776118050114