DOI QR코드

DOI QR Code

Characteristics of Rolling Noise Sources of Tram Resilient Wheels and Track

트램의 탄성차륜과 궤도의 전동 소음원 특성에 관한 연구

  • Jang, Seungho (Transportation Environmental Research Team, Korea Railroad Research Institute) ;
  • Ryue, Jungsoo (School of Naval Architecture and Ocean Engineering, University of Ulsan)
  • Received : 2015.04.03
  • Accepted : 2015.06.09
  • Published : 2015.06.30

Abstract

The characteristics of noise emission from tram systems should be investigated in order to design and construct an urban tram network that raises fewer environmental noise problems. In this paper, the characteristics of rolling noise from a tram were studied and a desired stiffness of the rail supports was proposed using a noise prediction model. The mobilities of embedded rails and resilient wheels were predicted using the Timoshenko beam model and the finite element model, respectively. The predicted mobilities were compared with the measured results. Compared with the measured values, the calculated noise level near the track showed small errors for frequencies higher than 300 Hz. Then, the source strengths of rail and wheel components were examined by varying the rail supporting stiffness and the slab supporting stiffness so that suitable stiffness values could be estimated that would reduce noise radiated from rails and wheels but that would not greatly increase the ground vibration.

도심 내의 트램 노선 설계 및 건설에서 환경 소음 문제를 해결하기 위해서는 트램 시스템의 소음 방사특성을 파악하여야 한다. 본 논문에서는 트램 시험 차량에 대한 전동 소음 특성을 연구하였으며, 전동 소음 관점에서의 레일 지지 구조의 적절한 강성을 검토하였다. 매립형 궤도와 탄성차륜의 모빌리티를 Timoshenko 보 모델과 유한 요소 모델을 각각 이용하여 구하였고, 측정값과 비교하였다. 선로변 방출 소음도에 대한 계산값을 측정값과 비교한 결과 300Hz 이상의 주파수 대역에서 작은 오차를 내었다. 레일 및 슬라브 지지 강성을 변화시켜가면서 레일 및 차륜의 소음원 강도를 분석하였으며, 지반 진동을 과다하게 유발하지 않으면서 레일 및 차륜으로부터 방사되는 소음이 감소될 수 있는 적정 지지 강성을 검토하였다.

Keywords

References

  1. P.J. Remington (1987) Wheel/rail rolling noise, I: theoretical analysis, Journal of the Acoustical Society of America, 81, pp. 1805-1823. https://doi.org/10.1121/1.394746
  2. D.J. Thompson (2009) Railway noise and vibration: mechanisms, modelling and means of control, Elsevier Ltd., Oxford, UK, pp. 127-222.
  3. S. Jang, J. Ryue (2013) Study on the rolling noise model using an analysis of wheel and rail vibration characteristics, Journal of the Korean Society for Railway, 16(3), pp. 175-182. https://doi.org/10.7782/JKSR.2013.16.3.175
  4. C.J.C. Jones, D.J. Thompson (2000) Rolling noise generated by railway wheels with visco-elastic layers, Journal of Sound and Vibration, 231(3), pp. 779-790. https://doi.org/10.1006/jsvi.1999.2562
  5. S. Jang, J. Ryue (2014) Study on the rolling noise characteristics of railway resilient wheels, Proceedings of the Acoustical Society of Korea Conference, Wonju, Korea, pp. 218-220.
  6. ISO 9613-2 (1996) Acoustics-Attenuation of sound during propagation outdoors-part 2: general method of calculation.
  7. J. Ryue, S. Jang (2012) Comparison of track vibration characteristics for domestic railway tracks in the aspect of rolling noise, Journal of the Korean Society for Railway, 16(2), pp. 85-92. https://doi.org/10.7782/JKSR.2013.16.2.085
  8. M.H.A. Janssens, M.G. Dittrich, F.G. de Beer, C.J.C. Jones (2006) Railway noise measurement method for pass-by noise, total effective roughness, transfer functions and track spatial decay, Journal of Sound and Vibration, 293, pp. 1007-1028. https://doi.org/10.1016/j.jsv.2005.08.070