References
- W. BOULGER, Pythagoras meets Fibonacci, Mathematics Teacher 82(4) (1989), 277-282.
- B. A. BURNS, Pre-service teachers' exposure to using the history of mathematics to enhance their teaching of high school mathematics, Issues in the undergraduate mathematics preparation of school teachers, The Journal 4 (2010).
- D. M. BURTON, Elementary Number Theory, McGraw-Hill, 2010.
- M. de VILLIERS, A further Pythagorean variation on a Fibonacci theme, Mathematics in School 31(5) (2002), 22.
- R. FOGARTY, Ten ways to integrate curriculum, Educational Leadership 49(2) (1991), 61-65.
- H. FREUDENTHAL, Revisiting mathematics education, China Lectures, Dordrecht: Kluwer Academic Publishers, 1991.
- U. T. JANKVIST, A categorization of the 'whys' and 'hows' of using history in mathematics education. Educational Studies in Mathematics 71(3) (2009), 235-261. https://doi.org/10.1007/s10649-008-9174-9
- D. KALMAN, R. MENA, The Fibonacci numbers-exposed, Math. Magazine 76(3) (2003) 167-181. https://doi.org/10.2307/3219318
- KIM M. K., Review and interpretations of Plimpton 322, The Korean Journal of History of Mathematics 20(1) (2007), 45-56. 김민경, 고대 바빌로니아 Plimpton 322의 역사적 고찰, 한국수학사학회지 20(1) (2007), 45-56.
- E. A. MARCHISOTTO, Connections in mathematics: an introduction to Fibonacci via Pythagoras, Fibo. Quart. 31(1) (1993) 21-27.
- D. PAGNI, Fibonacci meets Pythagoras, Mathematics in School 30(4) (2001) 39-40.
- PARK W. B., PARK, H. S, On the Pythagorean triple, J. Korean Soc. Math. Ed. Ser. A: The Mathematical Edu. 41(2) (2002), 227-231. 박웅배, 박혜숙 (2002). 피타고라스의 세 수, 한국수학교육학회, 수학교육 41(2) (2002), 227-231.
- PAULANO, Fibonacci and Pythagoras unite mathematicians, artists, musicians, naturalists, architects and beauticians, http://paulano.wordpress.com/2008/09/21/.
- E. ROBSON, Words and pictures: new light on Plimpton 322, The Amer. Math. Monthly 109 (2002), 105-120. https://doi.org/10.2307/2695324
- D. ROBINSON, Pythagoras meets Fibonacci, New Zealand Math. Magazine 43(2) (2006), 44.
-
ROH M. G., JUNG J. H., KANG J. G., On the general term of the recurrence relation
$a_n=a_{n-1}+a_{n-3},a_1=a_2=a_3=1$ , J. Korean Soc. Math. Ed. Ser. E: Comm. Mathematical Edu. 27(4) (2013), 357-367. 노문기, 정재훈, 강정기, 점화식$a_n=a_{n-1}+a_{n-3},a_1=a_2=a_3=1$ 의 일반항에 대하여, 수학교육논문집, 27(4) (2013), 357-367. - YANG Y. O., KIM T. H., A study on generalized Fibonacci sequence, The Korean Journal of History of Mathematics 21(4) (2008), 87-104. 양영오, 김태오, 피보나치 수열의 일반화에 관한 고찰, 한국수학사학회지 21(4) (2008), 87-104.