DOI QR코드

DOI QR Code

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Received : 2015.01.15
  • Accepted : 2015.01.22
  • Published : 2015.07.25

Abstract

Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.

Keywords

References

  1. Abramovitch, H. (2003), "Piezoelectric actuation for smart sandwich structures-closed form solutions", J. Sandwich Struct. Mater., 5(4), 377-396. https://doi.org/10.1177/109963603028496
  2. Aladwani, A., Aldraihem, O. and Baz, A. (2013), "Single degree of freedom shear-mode piezoelectric energy harvester", ASME J. Vib. Acoust., 135(5), 051011. https://doi.org/10.1115/1.4023950
  3. Baillargeon, B.P. and Vel, S.S. (2005a), "Exact solution for the vibration and active damping of composite plates with piezoelectric shear actuators", J. Sound Vib., 282(3-5), 781-804. https://doi.org/10.1016/j.jsv.2004.03.042
  4. Baillargeon, B.P. and Vel, S.S. (2005b), "Active vibration suppression of sandwich beams using piezoelectric shear actuators: experiments and numerical simulations", J. Intel. Mater. Syst. Struct., 16(6), 517-530. https://doi.org/10.1177/1045389X05053154
  5. Benjeddou, A. (2000), "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Comput. Struct., 76(1-3), 347-363. https://doi.org/10.1016/S0045-7949(99)00151-0
  6. Benjeddou, A. (2006), "First use of the shear piezoceramics and effective electromechanical coupling coefficient for damage detection and characterization", Proceedings of the III European Workshop on Structural Health Monitoring, Granada, Spain, July.
  7. Benjeddou, A. (2007), "Shear-mode piezoceramic advanced materials and structures: a state of the art", Mech. Adv. Mater. Struct., 14(4), 263-275. https://doi.org/10.1080/15376490600809336
  8. Benjeddou, A. (2009), "New insights in piezoelectric free-vibrations using simplified modeling and analyses", Smart Struct. Syst., 5(6), 591-612. https://doi.org/10.12989/sss.2009.5.6.591
  9. Benjeddou, A. (2010), "Approximate evaluations of the modal effective electromechanical coupling coefficient", Proceedings of the IUTAM Symposium on Multi-Functional Material Structures and Systems, IUTAM Book series 19, Springer, Dordrecht.
  10. Benjeddou, A. (2014), "Modal effective electromechanical coupling approximate evaluations and simplified analyses: numerical and experimental assessments", Acta Mech., 225(10), 2721-2742. https://doi.org/10.1007/s00707-014-1206-1
  11. Benjeddou, A. and Belouettar, S. (2006), On the evaluation and application of piezoelectric adaptive structures modal properties, Innovation in Computational Structures Technology, Saxe-Coburg Publications, Stirlingshire, UK.
  12. Benjeddou, A. and Ranger, J.A. (2006), "Use of shunted shear-mode piezoceramics for structural vibration passive damping", Comput. Struct., 84(22-23), 1415-1425. https://doi.org/10.1016/j.compstruc.2005.10.010
  13. Berik, P., Benjeddou, A., Brandl, A. and Krommer, M. (2011), "Experimental evaluation of the electromechanical coupling of smart structures with $d_{15}$ shear-mode piezoceramic cores", Proceedings of the 22nd International Conference on Adaptive Structures and Technologies, Corfu, Greece, October.
  14. Boudaoud, H., Benjeddou, A., Daya, E.M. and Belouettar, S. (2007), "Analytical evaluation of the effective EMCC of sandwich beams with a shear-mode piezoceramic core", Proceedings of the 2nd International Congress on Design and Modelling of Mechanical Systems, Monastir, Tunisia, March.
  15. Cao, W., Zhu, S. and Jiang, B. (1998), "Analysis of shear modes piezoelectric vibrator", J. Appl. Phys., 83(8), 4415-4420. https://doi.org/10.1063/1.367233
  16. De Godoy, C.T. and Trindade, M.A. (2011), "Modeling and analysis of laminate composite plates with embedded active passive piezoelectric networks", J. Sound Vib., 330, 194-216. https://doi.org/10.1016/j.jsv.2010.08.010
  17. Deu, J.F. and Benjeddou, A. (2005), "Free-vibration analysis of laminated plates with embedded shear-mode piezoceramic layers", Int. J. Solid. Struct., 42(7), 2059-2088. https://doi.org/10.1016/j.ijsolstr.2004.09.003
  18. Dos Santos, H.F.L. and Trindade, M.A. (2011), "Structural vibration control using extension and shear active-passive piezoelectric networks including sensitivity to electrical uncertainties", J. Braz. Soc. Mech. Sci. Eng., 33(3), 287-301. https://doi.org/10.1590/S1678-58782011000300004
  19. Edery-Azulay, L. and Abramovitch H. (2006), "Active damping of piezo-composite beams", Comput. Struct., 74, 458-466. https://doi.org/10.1016/j.compstruct.2005.04.026
  20. IEEE Inc. (1988), IEEE Standard on Piezoelectricity, ANS/IEEE Std 176-1987.
  21. Kim, J.S., Wang, K.W. and Smith, E.C. (2005), "High authority piezoelectric actuation system synthesis through mechanical response and electrical tailoring", J. Intel. Mater. Syst. Struct., 16(1), 21-31. https://doi.org/10.1177/1045389X05046686
  22. Majidi, C., Haataja, M. and Srolovitz, D.J. (2010), "Analysis and design principles for shear-mode piezoelectric energy harvesting with ZnO nanoribbons", Smart Mater. Struct., 19, 055027. https://doi.org/10.1088/0964-1726/19/5/055027
  23. Manjunath, T.C. and Bandyopathyay, B. (2006), "Design of multivariable POF controller for smart composite beam using embedded shear sensors and actuators", Int. J. Simul. Syst. Sci. Tech., 7(9), 49-69.
  24. Ren, B., Or, S.W., Zhang, Y., Zhang, Q., Li, X., Jiao, J., Wang, W., Liu, D., Zhao, X. and Luo, H. (2010), "Piezoelectric energy harvesting using shear mode $0.71Pb(Mg_{1/3}Nb_{2/3})O_3-0.29PbTiO_3$ single crystal cantilever", Appl. Phys. Let., 96, 083502. https://doi.org/10.1063/1.3327330
  25. Trindade, M.A. and Benjeddou, A. (2009), "Effective electromechanical coupling coefficients of piezoelectric adaptive structures: critical evaluation and optimization", Mech. Adv. Mater. Struct., 16(3), 210-223. https://doi.org/10.1080/15376490902746863
  26. Trindade, A.M. and Maio, C.E.B. (2008), "Multimodal passive vibration control of sandwich beams with shunted shear piezoelectric materials", Smart Mater. Struct., 17(5), 055015.. https://doi.org/10.1088/0964-1726/17/5/055015
  27. Wang, D.A. and Liu, N.Z. (2011), "A shear mode piezoelectric energy harvester based on pressurized water flow", Sens. Act. A: Phys., 167, 449-458. https://doi.org/10.1016/j.sna.2011.03.003
  28. Zhao, J.H., Zheng, X.J., Zhou, L., Zhang, Y., Sun, J., Dong, W., Deng, S.F. and Peng, S.T. (2012), "Investigation of a $d_{15}$ mode PZT-51 piezoelectric energy harvester with a series connection structures", Smart Mater. Struct., 21, 105006. https://doi.org/10.1088/0964-1726/21/10/105006
  29. Zhou, L., Sun, J., Zheng, X.J., Deng, S.F., Zhao, J.H., Peng, S.T., Zhang, Y., Wang, X.Y. and Cheng, H.B. (2012), "A model for the energy harvesting performance of shear mode piezoelectric cantilever", Sens. Act. A: Phys., 179, 185-192. https://doi.org/10.1016/j.sna.2012.02.041

Cited by

  1. Experimental Determination of the Complete Set of Constants for a Polarized Piezoceramic Using a Single Ring-Shaped Specimen vol.62, pp.12, 2020, https://doi.org/10.1007/s11018-020-01732-0
  2. Modal effective electromechanical coupling coefficient of shear-mode piezoceramic sandwich cantilevers with segmented multicore: Experimental and numerical assessments vol.28, pp.1, 2022, https://doi.org/10.1177/1077546320972908