References
- Ammar. A., Mokdad. B., Chinesta. F. and Keunings. R. (2006), "Anew family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids", J. Non-Newton. Fluid Mech., 139, 153-176. https://doi.org/10.1016/j.jnnfm.2006.07.007
- Ammar. A., Chinesta. F., Diez, P. and Huerta, A. (2010), "An estimator for separated representations of highly multidimensional models", Comput. Meth. Appl. Mech. Eng., 199, 1872-1880. https://doi.org/10.1016/j.cma.2010.02.012
- Ammar. A. Huerta, A., Chinesta, F., Cueto, E. and Leygue, A. (2014), "Parametric solutions involving geometry: a step towards efficient shape optimization", Comput. Meth. Appl. Mech. Eng., 268, 178-193. https://doi.org/10.1016/j.cma.2013.09.003
- Bognet, B., Leygue, A., Chinesta, F., Poitou, A. and Bordeu, F. (2012), "Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity", Comput. Meth. Appl. Mech. Eng., 201, 1-12.
- Bognet, B., Leygue, A. and Chinesta, F. (2014), "Separated representations of 3D elastic solutions in shell geometries", Adv. Model. Simul. Eng. Sci., 1(1), 1-34. https://doi.org/10.1186/2213-7467-1-1
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Carrera, E. (2003), "Historical review of Zig-Zag theories for multilayered plates and shells", Appl. Mech. Rev., 56(3), 287. https://doi.org/10.1115/1.1557614
- Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 215-296. https://doi.org/10.1007/BF02736224
- Chinesta, F., Ammar, A. and Cueto, E. (2010), " Recent advances and new challenges in the use of the Proper Generalized Decomposition for solving multidimensional models", Arch. Comput. Meth. Eng., 17, 327-350. https://doi.org/10.1007/s11831-010-9049-y
- Chinesta, F., Ammar, A., Leygue, A. and Keunings, R. (2011), "An overview of the Proper Generalized Decomposition with applications in computational rheology", J. Non-Newton. Fluid Mech., 166, 578-592. https://doi.org/10.1016/j.jnnfm.2010.12.012
- Chinesta, F., Ladeveze, P. and Cueto, E. (2011), "A short review in model order reduction based on Proper Generalized Decomposition", Arch. Comput. Meth. Eng., 18, 395-404. https://doi.org/10.1007/s11831-011-9064-7
- Chinesta, F., Leygue, A., Bognet, B., Ghnatios, Ch., Poulhaon, F., Bordeu, F., Barasinski, A., Poitou, A., Chatel, S. and Maison-Le-Poec, S. (2012). "First steps towards an advanced simulation of composites manufacturing by automated tape placement", Int J. Mater. Form. 7(1), 81-92. https://doi.org/10.1007/s12289-012-1112-9
- Chinesta, F., Leygue, A., Bordeu, F., Aguado, J.V., Cueto, E., Gonzalez, D., Alfaro, I., Ammar, A. and Huerta, A. (2013), "Parametric PGD based computational vademecum for efficient design, optimization and control", Arch. Comput. Meth. Eng., 20, 31-59. https://doi.org/10.1007/s11831-013-9080-x
- Chinesta, F., Keunings, R., Leygue, A. (2014), The Proper Generalized Decomposition for Advanced Numerical Simulations, A Primer, Springerbriefs, Springer.
- Ghnatios, Ch., Chinesta, F. and Binetruy, Ch. (2015), "The squeeze flow of composite laminates", International Journal of Material Forming. (in Press)
- Hochard, Ch., Ladeveze, P. and Proslier L. (1993), "A simplified analysis of elastic structures", Eur. J. Mech. A/Solid., 12(4), 509-535.
- Kratzig, W.B. and Jun, D. (2002), "Multi-layer multi-director concepts for D-adaptivity in shell theory", Comput. Struct., 80(9), 719-734. https://doi.org/10.1016/S0045-7949(02)00043-3
- Ladeveze, P. (1999), "Nonlinear Computational Structural Mechanics - New Approaches and Non-IncrementalMethods of Clculation, Springer, Berlin.
- Ladeveze, P., Arnaud, L., Rouch, P. and Blanz, C. (2001), "The variational theory of complex rays for the calculation of medium-frequency vibrations", Eng. Comput., 18(1-2), 193-221. https://doi.org/10.1108/02644400110365879
- Leygue, A., Chinesta, F., Beringhier, M., Nguyen, T.L., Grandidier, J.C., Pasavento, F. and Schrefler, B. (2013), "Towards a framework for non-linear thermal models in shell domains", lnt. J. Numer: Meth. Heat Fluid Flow, 23, 55-73. https://doi.org/10.1108/09615531311289105
- Naceur, H., Shiri, S., Coutellier, D. and Batoz, J.L. (2013), "On the modeling and design of composite multilayered structures using solid-shell finite element model", Finite Elem. Anal. Des., 70, 1-14.
- Nazeer, M., Bordeu, F., Leygue, A. and F. Chinesta, F. (2014), "Arlequin based PGD domain decomposition", Comput. Mech., 54(5), 1175-1190. https://doi.org/10.1007/s00466-014-1048-7
- Niroomandi, S., Gonzalez, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E. and Chinesta, F. (2013), "Real time simulation of biological soft tissues : A PGD approach", lnt. J. Numer. Meth. Biomed. Eng., 29(5), 586-600. https://doi.org/10.1002/cnm.2544
- Qatu, M.S. (2012), "Review of recent literature on static analyses of composite shells: 2000-2010", Open J. Compos. Mater., 2(3), 61-86. https://doi.org/10.4236/ojcm.2012.23009
- Reddy, J.N. and Arciniega, R.A. (2004), "Shear deformation plate and shell theories: from Stavsky to present", Mech. Adv. Mater. Struct., 11(6), 535-582. https://doi.org/10.1080/15376490490452777
- Sedira, L., Ayad, R., Sabhi, H., Hecini, M. and Sakami, S. (2012), "An enhanced discrete Mindlin finite element model using a zigzag function", Euro. J. Comput. Mech., 21(1-2), 122-140.
- Timoshenko, S.P. (1955), Strength of Materials, Van Nostrand.
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill.
- Timoshenko, S.P. and Young, D.H. (1982), Theory of Structures, McGraw-Hill.
- Trinh, V.D., Abed-Meraim, F. and Combescure, A. (2011), "A new assurned strain solid-shell formulation "SHB6" for the six-node prismatic finite element", J. Mech. Sci. Tech., 25(9), 2345-2364. https://doi.org/10.1007/s12206-011-0710-7
- Vidal, P., Gallimard, L. and Polit, O. (2013), "Proper generalized decomposition and layer-wise approach for the modeling of composite plate structures", lnt. J. Solid. Struct., 50(14-15), 2239-2250. https://doi.org/10.1016/j.ijsolstr.2013.03.034
- Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories", Compos. Struct., 101, 59-93. https://doi.org/10.1016/j.compstruct.2013.01.002
- Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014
Cited by
- Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data pp.1886-1784, 2020, https://doi.org/10.1007/s11831-018-9301-4
- Tape surface characterization and classification in automated tape placement processability: Modeling and numerical analysis vol.5, pp.5, 2018, https://doi.org/10.3934/matersci.2018.5.870
- Non-intrusive proper generalized decomposition involving space and parameters: application to the mechanical modeling of 3D woven fabrics vol.6, pp.1, 2015, https://doi.org/10.1186/s40323-019-0137-8
- A non-local void dynamics modeling and simulation using the Proper Generalized Decomposition vol.13, pp.4, 2015, https://doi.org/10.1007/s12289-019-01490-7
- Non-Intrusive In-Plane-Out-of-Plane Separated Representation in 3D Parametric Elastodynamics vol.8, pp.3, 2015, https://doi.org/10.3390/computation8030078
- Spurious-free interpolations for non-intrusive PGD-based parametric solutions: Application to composites forming processes vol.14, pp.1, 2015, https://doi.org/10.1007/s12289-020-01561-0
- Seismic vulnerability assessment of buried pipelines: A 3D parametric study vol.143, pp.None, 2015, https://doi.org/10.1016/j.soildyn.2021.106627