DOI QR코드

DOI QR Code

Design of an Efficient Keyword-based Retrieval System Using Concept lattice

개념 망을 이용한 키워드 기반의 효율적인 정보 검색 시스템 설계

  • Ma, Jin (Korea Institute of Science and Technology Information(KISTI)) ;
  • Jeon, In ho (Korea Institute of Science and Technology Information(KISTI)) ;
  • Choi, Young keun (Dept. of Computer Software, Kwang-Woon University)
  • Received : 2014.11.21
  • Accepted : 2015.03.20
  • Published : 2015.06.30

Abstract

In this thesis was conducted to propose a method for efficient information retrieval using concept lattices. Since this thesis designed a new system based on ordinary concept lattices, it has the same approach method as ontology, but this thesis proposes new concept lattices to be used by establishing collaborative relations between objects and concepts that users are likely to search information more efficiently. The system suggested by this thesis can be summarized as below. Firstly, this system leads to a collaborative search by using Three kinds of concepts, such as keyword concept lattices, which focus on input key words, expert concept lattices recommended by experts and theme concept lattices, and based on these 3 concept lattices, it will help users search information they want more efficiently. Besides, as the expert concept and the keyword concept become combined, further providing users with the frequency of keyword and the frequency of category, this system can function to recommend key words related to search words entered by users. Another function of this system is to inform users of key words and categories used in users' interested themes by using the theme concept lattices. Secondly, when there is not keyword entered by a user, it is possible for users to achieve the goal of search through the secondary search when this system provides them with key words related to the input keyword. Thirdly, since most of the information is managed while being dispersed, such dispersed and managed information not only has different expression methods but changes as time goes. Accordingly, By using XMDR for efficient data access and integration of distributed information, this thesis proposes a new technique and retrieval system to integrate dispersed data.

본 논문에서는 개념망을 이용한 효율적인 정보검색을 위한 방법을 제안한다. 본 논문은 일반적인 개념망을 기반으로 시스템을 설계하였기 때문에 온톨로지와 접근 방식은 같지만 사용자가 보다 효율적으로 정보검색을 하고자 하는 객체와 개념사이의 협업 관계를 구축하여 사용할 수 있도록 개념망을 제안한다. 제안한 시스템은 다음과 같다. 첫 번째, 입력 키워드 중심의 키워드 개념망과 전문가 그룹이 추천한 전문가 개념망 그리고 테마 개념망 이러한 세 종류의 개념을 이용하여 협업적 검색을 하며, 이를 기반으로 사용자가 원하는 정보를 검색할 수 있는 효율적인 검색 시스템을 제안한다. 그리고 전문가 개념과 키워드 개념이 결합되어 키워드의 빈도 및 카테고리의 빈도를 제공함으로써, 사용자가 입력한 검색어와 관련된 키워드를 추천하는 역할을 할 수 있다. 그리고 테마 개념망을 이용하여 사용자의 관심 테마에서 사용되는 키워드 또는 카테고리를 알려주는 기능도 제공한다. 두 번째, 사용자가 입력한 키워드가 없을 경우 2차 검색을 통해 입력 키워드와 관련 있는 키워드를 제공해줌으로써 관련키워드를 이용하여 검색의 목적달성이 가능하다. 세 번째, 이러한 정보들은 대부분 분산되어 관리되고 있기 때문에 이렇게 분산되어 관리되는 정보는 표현방식이 다를 뿐만 아니라 시간에 따라 정보가 변하게 된다. 따라서 분산된 정보의 효율적 데이터 접근 및 통합을 위해 XMDR(eXtended Mata-Data Registry)을 이용하였고, 본 논문에서는 분산된 데이터를 통합하기 위한 기법 및 검색 시스템을 제시한다.

Keywords

References

  1. Vo Ngoc Anh, Owen de Kretser, Alistair Moffat, "Vector-Space Ranking with Effective Early Termination" In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.35-42, 2001, http://dx.doi.org/10.1145/383952.383957
  2. lorescu, D, Kossmann, D, and Manolescu, L, "Integrating Keyword Search into XML Query Processing, "Computer Networks, Vol.33, No.1-6, pp.119-135, 2000. http://dx.doi.org/10.1016/S1389-1286(00)00069-4
  3. Ji-Hui Im, Young-Jun Bae, Ho-Seop Choi, Cheol-Young Ock, "A Measure of Semantic Similarity and its Application in User-Word Intelligent Network" KCC, Vol.34, No.01, pp.0189-0193, 2007.06
  4. Peter D. Turney, Patrick Pantel, "From Frequency to Meaning : Vector Space Models of Semantics", Journal of Artificial Intelligence Research 37 (2010) 141-188, http://dx.doi.org/10.1613/jair.2934
  5. Ji-Rong Wen, Ni Lao, Wei-Ying Ma, "Probabilistic Model for Contextual Retrieval" In IJCAI 05 : Proceedings of the 19th international joint conference on Artificial intelligence(2005), pp.1034-1041, http://dx.doi.org/10.1145/1008992.1009005
  6. Wille, R, "Restructuring lattice theory: an approach based on hierarchies of concepts", In:Ivan Rival(ed.), Ordered sets, Reidel, Dordrecht Boston, pp.445-470, 1982, http://dx.doi.org/10.1007/978-94-009-7798-3_15
  7. Ganter, B, Wille R, "Formal Concept Analysis: Mathematical Foundations", Heidelberg, Springer, 1999. http://dx.doi.org/10.1007/978-3-642-59830-2
  8. M. Bain, "Inductive construction of ontologies from Formal Concept Analysis", Australian Conference on Artificial Intelligence, 2003, pp. 88-99. http://dx.doi.org/10.1007/978-3-540-24581-0_8
  9. R. Belohlavek, J. Dvorak, J. Outrata, "Fast factorization of Concept Lattices by similarity: solution and an open problem", in: V. Snasel, R. Belohlavek (Eds.), Proceedings of Concept Lattices and their Applications (CLA), Ostrava, Czech Republic, 2004, pp. 47-57
  10. W.W. Cohen, "Data integration using similarity joins and a word-based information representation language", ACM Transactions on Information Systems, 18 3 (2000), pp. 288-321. http://dx.doi.org/10.1145/352595.352598
  11. S. Hwang, H.G. Kim, H.S. Yang, A FCA-based ontology construction for the design of class hierarchy, International Conference on Computational Science and its Applications (ICCSA) (3), 2005, pp. 827-835, http://dx.doi.org/10.1007/11424857_90
  12. Kim, Mi-Hye, "Adaptive Learning System based on the Concept Lattice of Formal Concept Analysis", Journal of the Korea Contents Association, Vol. 10 no. 10 (201010), p. 479-493. https://doi.org/10.5392/JKCA.10.10.479
  13. XMDR, http://www.xmdr.org/
  14. ISO/IEC-IS 11179,"Information technology Specification and standardization of data elements", 2003.
  15. Keck, K.D., McCarthy, J.L, "XMDR: Proposed Prototype Architecture Version 1.01", February, 2005.
  16. Jin Ma, Seok-Jae Moon, Gye-Dong Jung, Young- Keun Choi, "Design and Implementation of XMDR based on OGSA-DAI System for Data Integration retrieval", Proceedings of KIPS Conference 2009 VOL. 16 NO. 02, pp 0173-0174 (2009.11)
  17. Jin Ma, Seok-Jae Moon, Gye-Dong Jung, Young- Keun Choi, "Design of Multi-agent system based on the P2P Networks using Query Rewriting", The 34th KIPS Fall Conference 2010. VOL. 17 NO. 02pp 1780-1783 (2010.11)
  18. T.Berners-Lee, The Semantic Web, Scientific American, 2001.
  19. Antoniou and van Harmelen. A Semantic web Primer, The MIT Press, Cambridge, 2004.
  20. F.Manola and E.Miller, RDF Primer (http://www.w3.org/TR/2004/REC-rdf-primer-20040210/), W3C (MIT, ERCIM, Keio), 2004.
  21. M.K.Smith, C.Welty, and D.L.McGuinness, OWL Web Ontology Language Guide (http://www.w3.org/TR/owl-guide), W3C (MIT, ERCIM, Keio), 2004.
  22. Sung-Kwan Kang, Jung-Hyun Lee,"Light-Ontology Classification for Efficient Object Detection using a Hierarchical Tree Structure", Journal of Digital Convergence, Vol.10, No.10, 2012.11 pp. 215-220 https://doi.org/10.14400/JDPM.2012.10.10.215
  23. Yu Guo, Jie Liu, "Model Design of Semantic Website Construction",JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014, pp.2142 - 2147, http://dx.doi.org/10.4304/jsw.9.8.2142-2147

Cited by

  1. 온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안 vol.24, pp.1, 2015, https://doi.org/10.13088/jiis.2018.24.1.001