DOI QR코드

DOI QR Code

Uplift Capacity of Pipe Foundation for Single-span Greenhouse

단동 온실용 파이프 기초의 인발저항력 검토

  • Choi, Man Kwon (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Yun, Sung Wook (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kim, Ha Neul (Dept. of Agricultural Eng., Gyeongsang National Univ(Institute of Agriculture and Life Science)) ;
  • Lee, Si Young (Dept. of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Yu, Chan (Dept. of Agricultural Eng., Gyeongsang National Univ(Institute of Agriculture and Life Science)) ;
  • Yoon, Yong Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ(Institute of Agriculture and Life Science))
  • 최만권 (국립원예특작과학원 시설원예연구소) ;
  • 윤성욱 (경상대학교 농업생명과학연구원) ;
  • 김하늘 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 이시영 (농촌진흥청 농업공학부 에너지환경공학과) ;
  • 유찬 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원))
  • Received : 2015.03.16
  • Accepted : 2015.04.27
  • Published : 2015.06.30

Abstract

In order to provide design data support for reducing gale damage of single-span greenhouses, this paper experimentally evaluated the uplift capacity of a rafter pipe and continuous pipe foundation (anti-disaster standard), usually used for single-span greenhouses according to compaction ratio, embedded depth, and soil texture. In the reclaimed soil (Silt loam) and the farmland soil (Sandy loam), the ultimate uplift capacities of rafter pipe were 72.8kgf and 60.7kgf, respectively, and those of continuous pipe foundation were 452.7kgf and 450.3kgf, respectively at an embedded depth of 50cm and compaction rate of 85% (the hardest ground condition). The results showed that the ultimate uplift capacity of continuous pipe foundation was significantly improved at more than 6 times that of the rafter pipe. The soil texture considered in this paper had a sand content of 35%~59% and a silt content of 39%~58%, and it was shown that the ultimate uplift capacity did not have a significant difference depending on soil texture, and these results show that installing the rafter pipe and continuous pipe foundation while maintaining appropriate compaction conditions can give an advantage in securing stability in the farmland of greenhouses without significantly being influenced by soil texture. Based on the results of this paper, it was determined that maintaining a compaction rate above 75% for the continuous pipe foundation and above 85% for the rafter pipe was advantageous for securing stability in greenhouses. Especially when continuous pipe foundation of anti-disaster standard was applied, it was determined to be significantly advantageous in acquiring stability in greenhouses to prevent climate disaster.

본 연구에서는 강풍 피해의 절감을 위하여 서까래 파이프 및 파이프 줄기초의 설계 자료를 제공할 목적으로 온실의 지반고정을 위해 일반농가에서 주로 사용되고 있는 서까래 파이프와 내재해형 규격의 단동온실에 주로 사용되는 파이프 줄기초를 대상으로 토성, 다짐도 및 매입깊이에 따른 인발저항력을 실험적으로 검토하였다. 극한인발저항력은 가장 단단한 지반조건인 다짐률 85%, 최대매입깊이 50cm를 기준으로 파이프의 경우는 간척지 흙(실트질 롬) 72.8kgf, 농경지 흙(사질 롬) 60.7kgf, 줄기초의 경우는 간척지 흙 452.7kgf, 농경지 흙 450.3kgf으로 줄기초의 경우 파이프 보다 약 6배 이상 인발저항력이 크게 개선되는 것으로 나타났다. 본 연구에서 고려한 토성은 모래함량 35%~59%, 실트함량 39%~58%으로 극한인발저항력이 토성에 따라서 큰 차이가 없는 것으로 나타났으며, 이러한 결과는 온실의 파이프(서까래) 및 줄기초를 설치할 때 적절한 다짐조건을 유지한다면 토성의 영향을 크게 받지 않고 온실의 지반고정에 대한 안정성 확보에 크게 유리하다는 것을 나타낸다. 본 연구의 결과를 기준으로 줄기초는 다짐률 75% 이상, 일반 파이프의 경우에는 다짐률 85%이상으로 유지하는 것이 온실의 안정성 확보에 유리할 것으로 판단되었다. 특히 내재해형 규격인 줄기초를 적용한다면 기상재해에 따른 온실의 안정성 확보에 크게 유리할 것으로 판단되었다.

Keywords

References

  1. Japanese Society of Soil Mechanics and Foundation Engineering (JSSMFE). 1992. Uplift load testing method of piles (JSF 1821-1989). Japan.
  2. Kim, M.K. and S.W. Nam. 1995. Experimental Studies on the Structural Safety of Pipe-Houses. Protected Hort. Plant Fac. 4(1):17-24 (in Korean)
  3. Lee, B.G., S.W. Yun, M.K. Choi, S.Y. Lee, S.D. Moon, C. Yu, and Y.C. Yoon. 2014. Uplift bearing capacity of spiral steel peg for the single span greenhouse. Protected Hort. Plant Fac. 23(2):109-115 (in Korean) https://doi.org/10.12791/KSBEC.2014.23.2.109
  4. Lee, Y.B., H.J. Jun, and J.E. Son. 2010. Protected horticulture new edition. Hyangmoonsa. Seoul, Korea. p. 32-34 (in Korean).
  5. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2014a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2013. MAFRA, Sejong, Korea (in Korean).
  6. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2014b. Cultivation status of floricultural crop in 2013. MAFRA, Sejong, Korea (in Korean).
  7. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF), Rural Development Administration(RDA). 2010. Designated notice of standards to endure disaster for horticultural and special facilities. Gwacheon and Suwon, Korea (in Korean).
  8. Nam, S.W., and Y.S. Kim. 2009. Actual state of structures and environmental control facilities for tomato greenhouses in Chungnam region. Jour. Agri. Sci. 36(1):73-85 (in Korean).
  9. National Disaster Information Center (NDIC). 2015. Press release. http://www.safekorea.go.kr.
  10. Rural Development Administration (RDA). 2005. Damage aspects and countermeasure of horticultural facilities by meteorological disasters. RDA, Suwon, Korea (in Korean).
  11. Rural Development Administration (RDA). 2007a. Guidebook for reducing of meteorological disasters of agricultural facilities. RDA, Suwon, Korea (in Korean).
  12. Rural Development Administration (RDA). 2007b. Symposium for reducing of meteorological disasters of agricultural facilities. RDA, Suwon, Korea. p. 160-161 (in Korean).
  13. Rural Development Administration (RDA). 2009. The workshop for Reduction countermeasure of meteorological disasters for horticultural and special facilities. RDA, Suwon, Korea (in Korean).
  14. Rural Development Administration (RDA). 2010. Press release. http://www.rad.go.kr.
  15. Ryu, H.R., I.H. Yu, M.W. Cho, and Y.C. Um. 2009. Structural reinforcement methods and structural safety analysis for the elevated eaves height 1-2W type plastic greenhouse. J. Bio-Env. Con. 18(3):192-199 (in Korean).
  16. Suh, W.M., M.K. Choi, Y.H. Bae, J.W. Lee, and Y.C. Yoon. 2008. Structural safety analysis of a modified 1-2W type greenhouse enhanced for culturing paprika. J. Bio-Env. Con. 17(3):197-203 (in Korean).
  17. Yoon, Y.C., Y.S. Shin, S.B. Bae, H.T. Kim, J.S. Choi, and W.M. Suh. 2012. Variation of indoor air temperature by using hot water piping in greenhouse. J. Agri. & Life Sci. 46(2):179-190 (in Korean).
  18. Yu, I.H., E.H. Lee, M.W. Cho, H.R. Ryu, and Y.C. Kim. 2012. Development of multi-span plastic greenhouse for tomato cultivation. J. Bio-Env. Cont. 21(4):428-436 (in Korean). https://doi.org/10.12791/KSBEC.2012.21.4.428