DOI QR코드

DOI QR Code

The Characterization of Anti-HER-2/neu Monoclonal Antibody using Different in vivo Imaging Techniques

  • Moon, Cheol (Department of Clinical Laboratory Science, Semyung University) ;
  • Kim, Eun Jung (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Choi, Dan Bee (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Kim, Byoung Soo (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Kim, Sa Hyun (Department of Clinical Laboratory Science, Semyung University) ;
  • Choi, Tae Hyun (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS))
  • 투고 : 2015.02.01
  • 심사 : 2015.03.13
  • 발행 : 2015.03.31

초록

Recently, specific antibodies have been used extensively to diagnose and treat various diseases. It is essential to assess the efficacy and specificity of antibodies, especially the in vivo environment. Anti-HER-2/neu mAb was evaluated as a possible transporting agent for radioimmunotherapy. The monoclonal antibody was successfully radio-labeled with $^{131}I$. In vitro binding assays were performed to confirm its targeting ability using another radio-iodine, $^{125}I$. Binding percentage of $^{125}I$ labeled anti-HER-2/neu mAb in HER-2/neu expressing CT-26 cells was found to be 4.5%, whereas the binding percentage of $^{125}I$ labeled anti-HER-2/neu mAb in wild-type CT-26 was only 0.45%. In vivo images were obtained and analyzed through $\gamma$-camera and an optical fluorescent modality, IVIS-200. $\gamma$-camera images showed that $^{131}I$ labeled anti-HER-2/neu mAb accumulated in HER-2/neu CT-26 tumors. Optical imaging based on near infrared fluorescence labeled anti-HER-2/neu mAb showed higher fluorescence intensities in HER-2/neu CT-26 tumors than in wild-type CT-26 tumors. Anti-HER-2/neu mAb was found to specifically bind to its receptor expressing tumor. Our study demonstrates that in vivo imaging technique is a useful method for the evaluation of an antibody's therapeutic and diagnostic potentials.

키워드

참고문헌

  1. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005. 23: 1147-1157. https://doi.org/10.1038/nbt1137
  2. Akiyama T, Sudo C, Ogawara H, Toyoshima K, Yamamoto T. The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. Science. 1986. 232:1644-1646. https://doi.org/10.1126/science.3012781
  3. Alattia JR, Shaw JE, Yip CM, Prive GG. Molecular imaging of membrane interfaces reveals mode of beta-glucosidase activation by saposin C. Proc Natl Acad Sci U S A. 2007. 104:17394-17399. https://doi.org/10.1073/pnas.0704998104
  4. Arteaga CL, Winnier AR, Poirier MC, Lopez-Larraza DM, Shawver LK, Hurd SD, Stewart SJ. p185c-erbB-2 signal enhances cisplatin-induced cytotoxicity in human breast carcinoma cells:association between an oncogenic receptor tyrosine kinase and drug-induced DNA repair. Cancer Res. 1994. 54: 3758-3765.
  5. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. 1986. 319: 226-230. https://doi.org/10.1038/319226a0
  6. Buchsbaum DJ, Langmuir VK, Wessels BW. Experimental radioimmunotherapy. Med Phys. 1993. 20: 551-567. https://doi.org/10.1118/1.597142
  7. Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, Seeburg PH, Libermann TA, Schlessinger J, Francke U, Levinson A, Axel Ullrich. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science. 1985. 230: 1132-1139. https://doi.org/10.1126/science.2999974
  8. Crawford LM Jr. From the Food and Drug Administration. JAMA. 2002. 288: 1579. https://doi.org/10.1001/jama.288.13.1579-JFD20010-3-1
  9. DeNardo GL, DeNardo SJ, O'Donnell RT, Kroger LA, Kukis DL, Meares CF, Goldstein DS, Shen S. Are radiometal-labeled antibodies better than iodine-131-labeled antibodies: comparative pharmacokinetics and dosimetry of copper-67-, iodine- 131-, and yttrium-90-labeled Lym-1 antibody in patients with non-Hodgkin's lymphoma. Clin Lymphoma. 2000. 1: 118-126. https://doi.org/10.3816/CLM.2000.n.010
  10. DeNardo GL, Kukis DL, Shen S, DeNardo DA, Meares CF, DeNardo SJ. $^{67}Cu$-versus ${131}I$-labeled Lym-1 antibody: comparative pharmacokinetics and dosimetry in patients with non-Hodgkin's lymphoma. Clin Cancer Res. 1999. 5: 533-541.
  11. Esteban JM, Hyams DM, Beatty BG, Merchant B, Beatty JD. Radioimmunotherapy of human colon carcinomatosis xenograft with $^{90}Y$-ZCE025 monoclonal antibody: toxicity and tumor phenotype studies. Cancer Res. 1990. 50: 989s-992s.
  12. Fani M, Vranjes S, Archimandritis SC, Potamianos S, Xanthopoulos S, Bouziotis P, Varvarigou AD. Labeling of monoclonal antibodies with $^{153}Sm$ for potential use in radioimmunotherapy. Appl Radiat Isot. 2002. 57: 665-674. https://doi.org/10.1016/S0969-8043(02)00181-1
  13. Glenney JR Jr. Tyrosine-phosphorylated proteins: mediators of signal transduction from the tyrosine kinases. Biochim Biophys Acta. 1992. 1134: 113-127. https://doi.org/10.1016/0167-4889(92)90034-9
  14. Gunn AJ, Brechbiel MW, Choyke PL. The emerging role of molecular imaging and targeted therapeutics in peritoneal carcinomatosis. Expert Opin Drug Deliv. 2007. 4: 389-402. https://doi.org/10.1517/17425247.4.4.389
  15. Hurwitz E, Stancovski I, Sela M, Yarden Y. Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake. Proc Natl Acad Sci U S A. 1995. 92: 3353-3357. https://doi.org/10.1073/pnas.92.8.3353
  16. Jacobs RE, Cherry SR. Complementary emerging techniques: highresolution PET and MRI. Curr Opin Neurobiol. 2001. 11: 621-629. https://doi.org/10.1016/S0959-4388(00)00259-2
  17. Jaramillo ML, Leon Z, Grothe S, Paul-Roc B, Abulrob A, O'Connor McCourt M. Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting. Exp Cell Res. 2006. 312: 2778-2790. https://doi.org/10.1016/j.yexcr.2006.05.008
  18. Kaminski MS, Fig LM, Zasadny KR, Koral KF, DelRosario RB, Francis IR, Hanson CA, Normolle DP, Mudgett E, Liu CP, Moon S, Scott P, Miller RA, Wahl RL. Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. J Clin Oncol. 1992. 10: 1696-1711. https://doi.org/10.1200/JCO.1992.10.11.1696
  19. Kraeber-Bodere F, Bodet-Milin C, Rousseau C, Eugene T, Pallardy A, Frampas E, Carlier T, Ferrer L, Gaschet J, Davodeau F, Gestin JF, Faivre-Chauvet A, Barbet J, Cherel M. Radioimmunoconjugates for the treatment of cancer. Semin Oncol. 2014. 41: 613-622. https://doi.org/10.1053/j.seminoncol.2014.07.004
  20. Krose M, Zimmern RL, Pinder SE. HER2 status in breast cancer--an example of pharmacogenetic testing. J R Soc Med. 2007. 100: 326-329. https://doi.org/10.1258/jrsm.100.7.326
  21. Kraus MH, Popescu NC, Amsbaugh SC, King CR. Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J. 1987. 6: 605-610.
  22. Lacroix H, Iglehart JD, Skinner MA, Kraus MH. Overexpression of erbB-2 or EGF receptor proteins present in early stage mammary carcinoma is detected simultaneously in matched primary tumors and regional metastases. Oncogene. 1989. 4:145-151.
  23. Lewington V. Development of $^{131}I$-tositumomab. Semin Oncol. 2005. 32: S50-S56. https://doi.org/10.1053/j.seminoncol.2005.01.014
  24. Massoud TF, Gambhir SS. Molecular imaging in living subjects:seeing fundamental biological processes in a new light. Genes Dev. 2003. 17: 545-580. https://doi.org/10.1101/gad.1047403
  25. Pfeiffer P, Nielsen D, Yilmaz M, Iversen A, Vejlo C, Jensen BV. Cetuximab and irinotecan as third line therapy in patients with advanced colorectal cancer after failure of irinotecan, oxaliplatin and 5-fluorouracil. Acta Oncol. 2007. 46: 697-701. https://doi.org/10.1080/02841860601009455
  26. Porter AC, Vaillancourt RR. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene. 1998. 17: 1343-1352. https://doi.org/10.1038/sj.onc.1202171
  27. Rajkumar T, Gullick WJ. The type I growth factor receptors in human breast cancer. Breast Cancer Res Treat. 1994. 29: 3-9. https://doi.org/10.1007/BF00666177
  28. Read ED, Eu P, Little PJ, Piva TJ. The status of radioimmunotherapy in CD20+ non-Hodgkin's lymphoma. Target Oncol. 2015. 10: 15-26. https://doi.org/10.1007/s11523-014-0324-y
  29. Richman CM, DeNardo SJ. Systemic radiotherapy in metastatic breast cancer using $^{90}Y$-linked monoclonal MUC-1 antibodies. Crit Rev Oncol Hematol. 2001. 38: 25-35. https://doi.org/10.1016/S1040-8428(00)00136-0
  30. Sakiyama Y, Hatano K, Tajima T, Kato T, Kawasumi Y, Suzuki M, Ito K. An atlas-based image registration method for dopamine receptor imaging with PET in rats. Ann Nucl Med. 2007. 21:455-462. https://doi.org/10.1007/s12149-007-0049-4
  31. Sharkey RM, Goldenberg DM. Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med. 2005. 46: 115-127.
  32. Shikano N, Nakajima S, Kotani T, Ogura M, Sagara J, Iwamura Y, Yoshimoto M, Kubota N, Ishikawa N, Kawai K. Transport of D-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents. Nucl Med Biol. 2007. 34: 659-665. https://doi.org/10.1016/j.nucmedbio.2007.05.001
  33. Shimoni A, Nagler A. Radioimmunotherapy and stem-cell transplantation in the treatment of aggressive B-cell lymphoma. Leuk Lymphoma. 2007. 48: 2110-2120. https://doi.org/10.1080/10428190701573273
  34. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987. 235: 177-182. https://doi.org/10.1126/science.3798106
  35. Stern DF, Heffernan PA, Weinberg RA. p185, a product of the neu proto-oncogene, is a receptorlike protein associated with tyrosine kinase activity. Mol Cell Biol. 1986. 6: 1729-1740. https://doi.org/10.1128/MCB.6.5.1729
  36. Tan M, Yao J, Yu D. Overexpression of the c-erbB-2 gene enhanced intrinsic metastasis potential in human breast cancer cells without increasing their transformation abilities. Cancer Res. 1997. 57: 1199-1205.
  37. van Gog FB, Visser GW, Stroomer JW, Roos JC, Snow GB, van Dongen GA. High dose rhenium-186-labeling of monoclonal antibodies for clinical application: pitfalls and solutions. Cancer. 1997. 80: 2360-2370. https://doi.org/10.1002/(SICI)1097-0142(19971215)80:12+<2360::AID-CNCR5>3.0.CO;2-F
  38. Wiseman GA, White CA, Stabin M, Dunn WL, Erwin W, Dahlbom M, Raubitschek A, Karvelis K, Schultheiss T, Witzig TE, Belanger R, Spies S, Silverman DH, Berlfein JR, Ding E, Grillo-Lopez AJ. Phase I/II $^{90}Y$-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin's lymphoma. Eur J Nucl Med. 2000. 27: 766-777. https://doi.org/10.1007/s002590000276
  39. Witzig TE. Radioimmunotherapy for B-cell non-Hodgkin lymphoma. Best Pract Res Clin Haematol. 2006. 19: 655-668. https://doi.org/10.1016/j.beha.2006.05.002
  40. Yu D, Liu B, Jing T, Sun D, Price JE, Singletary SE, Ibrahim N, Hortobagyi GN, Hung MC. Overexpression of both p185cerbB2 and p170mdr-1 renders breast cancer cells highly resistant to taxol. Oncogene. 1998. 16: 2087-2094. https://doi.org/10.1038/sj.onc.1201729