DOI QR코드

DOI QR Code

Insulin-like Growth Factor-1 (IGF-1) Gene Expression Is Enhanced under Hypothermia but Depressed under Additional Ischemic Stimulus

  • Kwon, O-Yu (Department of Anatomy, College of Medicine, Chungnam National University) ;
  • Kwon, Kisang (Department of Biomedical Laboratory Science, College of Health & Welfare, Kyungwoon University) ;
  • Yu, Kweon (Korea Research Institute of Bioscience & Biotechnology) ;
  • Kim, Seung-Whan (Department of Emergency Medicine, College of Medicine, Chungnam National University)
  • Received : 2015.03.13
  • Accepted : 2015.05.07
  • Published : 2015.06.30

Abstract

There are several studies that show hypothermia improves cellular ischemia damages on experimental and clinical bases. However, its exact molecular mechanisms are unclear. In this study, we demonstrate that hypothermia induced insulin-like growth factor 1 (IGF1) gene expression, and its expression was dramatically decreased under ischemic insults. It was also demonstrated that hypothermia activated endoplasmic reticulum (ER) stress sensors especially both the phosphorylation of $eIF2{\alpha}$ (eukaryotic translation initiation factor 2 alpha) and ATF6 (activating transcription factor-6) proteolytic cleavage. However, the factors of apoptosis and autophagy were not associated with hypothermia. We suggest that hypothermia-treated IGF1 gene expression after ischemia may show a good possibility for the development of treatments and diagnostic methods in cerebral ischemic damages.

Keywords

References

  1. Agrogiannis G, Sifakis S, Patsouris ES, Konstantinidou AE. Insulin-like growth factors in embryonic and fetal growth and skeletal development. Mol Med Rep. 2014. 10: 579-584. https://doi.org/10.3892/mmr.2014.2258
  2. Al-Fageeh MB, Smales CM. Cold-inducible RNA binding protein(CIRP) expression is modulated by alternative mRNAs. RNA. 2009. 15: 1164-1176. https://doi.org/10.1261/rna.1179109
  3. Bernard SA, Gray TW, Buist MD. Treatment of comatous survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002. 346: 557-563. https://doi.org/10.1056/NEJMoa003289
  4. Braakman I, Bulleid NJ. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 2011. 80: 71-99. https://doi.org/10.1146/annurev-biochem-062209-093836
  5. Holzer M, Sterz F, Darby JM. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002. 346: 549-556. https://doi.org/10.1056/NEJMoa012689
  6. Jin M, Klionsky DJ. Regulation of autophagy: Modulation of the size and number of autophagosomes. FEBS Lett. 2014. 588: 2457-2463. https://doi.org/10.1016/j.febslet.2014.06.015
  7. Kawai N, Okauchi M, Morisaki K, Nagao S. Effects of delayed intraischemic and postischemic hypothermia on a focal model of transient cerebral ischemia in rats. Stroke. 2000. 31: 1982-1989. https://doi.org/10.1161/01.STR.31.8.1982
  8. Kudo T, Kanemoto S, Hara H, Morimoto N, Morohara T, Kimura R, Tabira T, Imaizumi K, Takeda M. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 2008. 15: 364-375. https://doi.org/10.1038/sj.cdd.4402276
  9. Lee J, Ozcan U. Unfolded protein response signaling and metabolic diseases. J Biol Chem. 2014. 289: 1203-1211. https://doi.org/10.1074/jbc.R113.534743
  10. Lovat PE, Oliverio S, Corazzari M, Ranalli M, Pearson AD, Melino G, Piacentini M, Redfern CP. Induction of GADD153 and Bak: novel molecular targets of fenretinide-induced apoptosis of neuroblastoma. Cancer Lett. 2003. 197: 157-163. https://doi.org/10.1016/S0304-3835(03)00098-3
  11. Mehta SL, Manhas N, Raqhubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007. 54: 34-66. https://doi.org/10.1016/j.brainresrev.2006.11.003
  12. Miyazawa T, Tamura A, Fukui S, Hossmann KA. Effect of mild hypothermia on focal cerebral ischemia. Review of experimental studies. Neurol Res. 2003. 25: 457-464. https://doi.org/10.1179/016164103101201850
  13. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J. Targeted temperature management at 33 versus 36 after cardiac arrest. N Engl J Med. 2013. 369: 2197-2206. https://doi.org/10.1056/NEJMoa1310519
  14. Ning XH, Chen SH, Xu CS, Li L, Yao LY, Qian K, Krueger JJ, Hyyti OM, Portman MA. Hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis. J Appl Physiol. 2002. 92: 2200-2207. https://doi.org/10.1152/japplphysiol.01035.2001
  15. Yagita Y, Sakoda S, Kitagawa K. Gene expression in brain ischemia. Brain Nerve. 2008. 60: 1347-1355.
  16. Yamaguchi T, Sakurai M, Abe K, Matsumiya G, Sawa Y. Impact of the endoplasmic reticulum stress response in spinal cord after transient ischemia. Brain Res. 2007. 1169: 24-33. https://doi.org/10.1016/j.brainres.2007.06.093
  17. Yanamoto H, Nagata I, Niitsu Y. Prolonged mild hypothermia therapy protects the brain against permanent focal ischemia. Stroke. 2001. 32: 232-239. https://doi.org/10.1161/01.STR.32.1.232