DOI QR코드

DOI QR Code

Characteristics of Algae Occurrence on Environmental Changes

환경변화에 따른 조류 발생 변화

  • Noh, Seongyu (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Shin, Yuna (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Choi, Heelak (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Lee, Jaeyoon (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Lee, Jaean (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Rhew, Doughee (Water Environment Research Department, National Institute of Environmental Research)
  • 노성유 (국립환경과학원 유역생태연구팀) ;
  • 신유나 (국립환경과학원 유역생태연구팀) ;
  • 최희락 (국립환경과학원 유역생태연구팀) ;
  • 이재윤 (국립환경과학원 유역생태연구팀) ;
  • 이재안 (국립환경과학원 유역생태연구팀) ;
  • 류덕희 (국립환경과학원 물환경연구부)
  • Received : 2015.03.06
  • Accepted : 2015.05.25
  • Published : 2015.06.30

Abstract

Pilot scale system was designed to identify the growth and movement of algae, depending on environmental changes(retention time, nutrient concentration, etc) in Gangjeong-Goryeong Weir of the Nakdong River. Considering the stability of algal culture and easy observation of algal growth, pilot scale system was made of transparent acrylic material(3 sets of flexible cylindrical water tanks with 1 m diameter and 4 m height). Auxiliary equipments include light intercepter, water inflow device for different water depth and storage of reclaimed water. The retention time was 2 days(before construction of weir; treatment 1), 8 days(after construction of weir, 2013; treatment 2) and 30 days(2014; treatment 3). According to the water temperature of treatment 1 were similar by depth, treatment 3 showed a difference between the surface(0 m) and bottom(4 m) more than $3^{\circ}C$. DO, pH showed relatively high in the surface than the bottom. Nutrients showed eutrophic condition in all experiments. The Chlrophyll-a concentration of the treatment 1 showed a relatively lower value than the Chlrophyll-a concentration of the treatment 2 and 3. Therefore, the retention time was considered to influence the growth of phytoplankton.

환경변화(체류 시간)에 따른 조류발생기작 및 이동특성 연구를 위해 현장규모 모의실험장치를 제작하여 낙동강 수계의 강정 고령보를 대상으로 체류 시간에 따른 조류발생 및 이동특성을 파악하고자 하였다. 현장규모 모의실험장치는 조류배양의 효율성 및 조류성장 관찰의 편리성 등을 고려하여 투명아크릴로 제작하였다(직경 1 m, 높이 4 m, 가변형 원통수조, 3 sets). 빛 차단장치, 수심별 유입장치, 재이용수 저류조 등의 부대시설을 설치하였다. 본 연구에서 체류 시간 조건은 2일(보설치 전, 실험조 1), 8일(보설치 후 2013년 체류 시간, 실험조 2), 30일(2014년 체류 시간, 실험조 3)로 선정하였다. 실험결과, 실험조별 수온은 실험조 1에서는 큰 차이를 보이지 않았으며 실험조 3에서는 표층(0 m)과 저층(4 m) 간 약 $3^{\circ}C$ 이상의 차이를 보였다. 용존산소(DO), pH 변화 분석 결과 모든 실험조에서 표층 0 m에서 저수심(2 m, 4 m) 보다 상대적으로 높은 값을 보였다. 영양염류(TN, $PO_4-P$)는 모든 실험조에서 부영양 상태를 나타냈다. Chlorophyll-a 분석 결과 실험조 1은 평균 $19.8{\mu}g/L$, 실험조 2는 평균 $35.0{\mu}g/L$, 실험조 3은 평균 $36.6{\mu}g/L$로 실험조 1 보다 실험조 2, 3에서 약 2배 높은 농도를 나타냈다. 따라서 환경 요인 중 체류 시간은 식물플랑크톤 발생에 많은 영향을 미치는 것으로 판단된다.

Keywords

References

  1. 임현식, 최진우. 2005. 영암호 저서동물군집에 미친 하구둑 건설의 영향, 한국수산과학회, 38(3), 172-183.(Lim HS, Choi JW. 2005. Ecological Impact of the Dyke Construction on the Marine Benthos Community of the Oligohaline Youngam Lake, Journal of the Korean Fisheries and Aquatic Sciences, 38(3), 172-183.) https://doi.org/10.5657/kfas.2005.38.3.172
  2. 김경현, 이재훈, 안광국. 2012. 대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향, 한국하천호수학회, 45(2), 158-173.(Kim GH, Lee JH, An KG. 2012. Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir, Korean Journal of Limnology, 45(2), 158-173.)
  3. 김종민, 허성남, 노혜란, 양희정, 한명수. 2003. 호소형 및 하천형 댐 호의 육수학적 특성과 조류발생과의 상관관계, 한국하천호수학회, 36(2), 124-138.(Kim JM, Heo SN, Noh HR, Yang HJ, Han MS. 2003. Relationship between Limnological characteristics and Algal Bloom in Laketype and River-type Reservoirs, Korea, Korean Journal of Limnology, 36(2), 124-138.)
  4. 권오섭. 1991. 낙동강 하구언 건설에 의한 환경요인의 변화, 한국하천호수학회, 24(4), 231-238.(Kwon OS. 1991. Effect of River Barrage on the Changes of Environmental Factors in Naktong Estuary, Korean Journal of Limnology, 24(4), 231-238.)
  5. 노성유, 박혜경, 최희락, 이재안. 2014. 기후변화에 따른 대청호 추동지점에서의 남조류 발생 패턴 분석, 한국물환경학회, 30(4), 377-385.(Noh SY, Park HK, Choi HL, Lee JA. 2014. Effect of Climate Change for Cyanobacteria Growth Pattern in Chudong Station of Lake Daechung, Journal of Korean Society on Water Environment, 30(4), 377-385.) https://doi.org/10.15681/KSWE.2014.30.4.377
  6. 서동일, 남귀숙, 이상협, 이의행, 김미리내, 최종윤, 김정희, 장광현. 2013. 낙동강 보 구간의 플랑크톤 군집조성과 환경요인에 의한 영향 분석, 한국환경생물학회, 31(4), 362-369.(Seo DI, Nam GS, Lee SH, Lee EH, Kim M, Choi JY, Kim JH, Chang KH. 2013. Plankton Community in Weir Section of the Nakdong River and Its Relation with Selected Environmental Factors, Korean Journal Environment Biology, 31(4), 362-369.)
  7. 서정관, 이혜진, 정익교. 2010. 낙동강 하류부에서 Stephanodiscus 속에 의한 수화 발생시 미생물먹이망 군집 동태, 한국환경생물학회, 28(3), 172-178.(Seo JK, Lee HJ, Chung IK. 2010. The Community Dynamics of Microbial Food Web during Algal Bloom by Stephanodiscus spp. in Downstream of Nakdong River, Korean Journal Environment Biology, 28(3), 172-178.)
  8. 신재기, 황순진, 조경제. 2003. 평택호와 유역 주요 하천의 수환경 및 오염도 평가, 한국하천호수학회, 36(1), 38-47.(Shin JK, Hwang SJ, Cho KJ. 2003. Assessment of Water Quality in Pyeongtaek Reservoir and Its Main Tributaries, Korean Journal of Limnology, 36(1), 38-47.)
  9. 정승현, 박혜경, 이혜진, 이수형. 2013. 낙동강 물금 지점의 겨울 및 봄철 식물플랑크톤 생물량에 대한 기후변화 영향, 한국물환경학회, 29(2), 155-164.(Joung SH, Park HK, Lee HJ, Lee SH. 2013. Effect of Climate Change for Diatom Bloom at Winter and Spring Season in Mulgeum Station of the Nakdong River, South Korea, Journal of Korean Society on Water Environment, 29(2), 155-164.)
  10. 정승현, 안치용, 최애란, 장감용, 오희목. 2005. 대청호에서 강우와 식물플랑크톤 군집의 관계, 한국환경생물학회, 23(1), 57-63.(Joung SH, Ahn CY, Choi AR, Jang KY, Oh HM. 2005. Relation between Rainfall and Phytoplankton Community in Daechung Reservoir, Korean Journal Environment Biology, 23(1), 57-63.)
  11. 조경제, 신제기. 1995. 낙동강에서 규조류 Stephanodiscus hantzschiif. tenuis와 S. parvus의 만성적 대발생, 한국조류학회, 10(2), 91-96.(Cho KJ, Shin JG. 1995. Persistent Blooms of Diatoms Stephanodiscus hantzschii f. tenuis and S. parvus in the Naktong River, Algae, 10(2), 91-96.)
  12. 조완희, 염경택, 김진수, 반양진, 정세웅. 2012. 대청호의 조류발생 분석, 한국환경영향평가학회, 21(3), 367-380.(Cho WH, Yum KT, Lim JS, Ban YJ, Chung SW. 2012. Study on Algae Occurrence in Daecheong Reservoir, Journal of Environmental Impact Assessment, 21(3), 367-380.)
  13. 이지민, 이정준, 박종근, 이정호, 장천영, 윤성명. 2005. 대청호 남조류 대발생기의 동물플랑크톤 相 및 Microcystis aeruginosa와 물벼룩류 개체수 변동의 상관관계, 한국하천호수학회, 38(2), 146-159.(Lee JM, Lee JJ, Park JG, Lee JH, Chang CY, Yoon SM. 2005. Zooplankton Fauna and the Interrelationship Among Cladiceran Populations and Microcystis aeruginosa (Cyanophyceae) during the Cyanobacterial Blooming Season at Daecheong Lake, South Korea. Korean Journal of Limnology, Journal of Korean Society on Water Environment, 38(2), 146-159.)
  14. 이재운, 권헌각, 최한영. 2014. 낙동강수계 권역별 비점오염원 오염도 평가, 한국환경영향평가학회, 23(5), 393-405.(Lee JW, Kwon HG, Choi HY. 2014. Evaluation of Pollution Level Attributed to Nonpoint Sources in Nakdonggang Basin, Korea, Journal of Environmental Impact Assessment, 23(5), 393-405.)
  15. 유재정, 이혜진, 이경락, 류희성, 황정화, 신라영, 천세억. 2014a. 낙동강의 식물플랑크톤 우점종의 분포특성 및 수온과의 상관성, 한국하천호수학회, 47(4), 247-257.(Yu JJ, Lee HJ, Lee KL, Lyu HS, Whang JW, Shin LY, Chen SU. 2014a. Relationship between Distribution of the Dominant Phytoplankton Species and Water Temperature in the Nakdong River, Korea, The Korean Society of Limnology, 47(4), 247-257.)
  16. 유재정, 이혜진, 이경락, 이인정, 정강영, 천세억. 2014b. 낙동강의 환경요인이 조류군집 구성에 미치는 영향, 한국물환경학회, 30(5), 539-548.(Yu JJ, Lee HJ, Lee KL, Lee IJ, Jung GY, Chen SU. 2014b. Effects of Environmental Factors on Algal Communities in the Nakdong River, Journal of Korean Society on Water Environment, 30(5), 539-548.) https://doi.org/10.15681/KSWE.2014.30.5.539
  17. Forsberg C, Ryding SO. 1980. Eutrophication Parameters and Trophic State Indices in 30 Swedish Waste Receiving Lakes, Archives of Hydrobiology, 89, 189-207.
  18. Ichimura T. 1979. 2. Isolation and Culture methods of Algae. 2.5.B. Freshwater Algae. In Nishizawa, K. and Chihara, M. (eds), Methods in Phycological Stidues. Kyoritsu Shuppan, Tokyo, pp. 294-305. (in Japanese without English title)
  19. Linda EG, James MG, Lee WW. 2009. Algae, Benjamin Cummings Pub.
  20. Ministry of Environment (MOE). 2014. Standard Methods for the Examination Water Quality, Ministry of Environment.
  21. Sirenko IA, Kokyrsta PN. 1981. Daily vertical migration of Microcystis aeruginosa and its effect on the content of nitrogenous components in the cells, Hydrobiol. J, 17, 34-42.
  22. Takamuta N, Yasuno M. 1984. Diurnal changes in the Vertical distribution of phytoplankton in hypertrophic lake Kasumigaura, Japan, Hydrobiol, 112, 53-60. https://doi.org/10.1007/BF00007666
  23. Welch EB. 1984. Lake restoration results. In: Ecosystems of the world 23, Lakes and reservoirs.

Cited by

  1. Simulating seasonal variability of phytoplankton in stream water using the modified SWAT model 2017, https://doi.org/10.1016/j.envsoft.2017.11.005
  2. Spatiotemporal and Longitudinal Variability of Hydro-meteorology, Basic Water Quality and Dominant Algal Assemblages in the Eight Weir Pools of Regulated River (Nakdong) vol.51, pp.4, 2018, https://doi.org/10.11614/KSL.2018.51.4.268
  3. The Change of Phytoplankton Community Structure and Water Quality in the Juksan Weir of the Yeongsan River Watershed vol.36, pp.4, 2018, https://doi.org/10.11626/KJEB.2018.36.4.591
  4. 하절기 낙동강 창녕함안보 구간에서의 수질특성 및 영향인자의 상관관계 분석 vol.31, pp.1, 2017, https://doi.org/10.11001/jksww.2017.31.1.083
  5. Spatiotemporal Distribution of Algae and Characteristics of Algal Abundance in Lake Okjung, Korea vol.41, pp.10, 2015, https://doi.org/10.4491/ksee.2019.41.10.554
  6. Occurrence of Harmful Blue-green Algae at Algae Alert System and Water Quality Forecast System Sites in Daegu and Gyeongsangbuk-do between 2012 and 2019 vol.42, pp.12, 2015, https://doi.org/10.4491/ksee.2020.42.12.664
  7. A Comparative Study on the Application of Boosting Algorithm for Chl-a Estimation in the Downstream of Nakdong River vol.43, pp.1, 2015, https://doi.org/10.4491/ksee.2021.43.1.66