DOI QR코드

DOI QR Code

굴절교정수술을 받은 근시안과 정시안에서 중심부 및 주변부의 굴절력 비교

Comparison of Central and Peripheral Refraction in Myopic Eyes after Corneal Refractive Surgery and Emmetropes

  • 투고 : 2015.05.01
  • 심사 : 2015.05.29
  • 발행 : 2015.06.30

초록

목적: 근시성 굴절교정수술안에서 수평경선에 따른 중심부 및 주변부의 굴절력 변화를 정시안과 비교 평가하고자 하였다. 방법: 수술안 120 안(평균: $23.56{\pm}2.54$세, 범위: 20~29세)과 정시안 40 안(평균: $22.50{\pm}1.74$세, 범위: 20~25세)을 대상으로 개방형 자동굴절력계를 사용하여 중심시야를 기준으로 코 쪽과 귀 쪽의 수평방향 $5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$, $25^{\circ}$의 굴절력을 각각 측정하였다. 수술안은 수술 전 등가구면 굴절이상에 따라 -6.00 D 미만은 수술안 그룹 1, -6.00 D 이상은 수술안 그룹 2로 분류하여 비교 분석하였다. 결과: 수술안 그룹 1의 수술 전 등가구면 굴절이상은 $-4.56{\pm}0.92D$(범위: -2.50 ~ -5.58 D)였고, 수술안 그룹 2는 $-7.09{\pm}0.96D$(범위: -6.00 ~ -9.00 D)로 나타났다. 정시안의 등가구면 M 평균값의 범위는 $-0.20{\pm}0.22D$(중심)에서 $-0.64{\pm}0.83D$(귀 방향 $25^{\circ}$)와 $-0.20{\pm}0.67D$(코 방향 $25^{\circ}$); 수술안 그룹 1의 M 평균값의 범위는 $-0.16{\pm}0.29D$(중심)에서 $-5.29{\pm}1.82D$(귀 방향 $25^{\circ}$)와 $-4.48{\pm}1.88D$(코 방향 $25^{\circ}$); 수술안 그룹 2의 M 범위는 $-0.20{\pm}0.32D$(중심)에서 $-7.98{\pm}2.08D$(귀 방향 $25^{\circ}$)와 $-7.90{\pm}2.26D$(코 방향 $25^{\circ}$)로 나타났고, 세 그룹 사이의 M 굴절력은 중심(p=0.600)과 귀 방향 $5^{\circ}$(p=0.647)에서 통계적으로 유의한 차이가 없었으나, 주변부 방향으로 갈수록 M 굴절력은 큰 차이를 보였다(p=0.000). 결론: 정시안은 망막의 중심부와 주변부에서 상대적으로 일정한 굴절이상을 보였고, 수평경선에서 주변부 근시흐림의 형태가 나타난 반면, 근시 굴절교정수술안에서는 중심부와 주변부 굴절이상이 정시안과는 다르고 중심부와 주변부의 굴절력 차이가 큰 것으로 나타났다.

Purpose: To evaluate changes in central and peripheral refraction along the horizontal visual fields in myopic corneal refractive surgery group compared with emmetropes. Methods: One hundred twenty eyes of 60 subjects ($23.56{\pm}2.54$ years, range: 20 to 29) who underwent myopic refractive surgery and 40 eyes of 20 emmetropes ($22.50{\pm}1.74$ years, range: 20 to 25) were enrolled. The central and peripheral refractions were measured along the horizontal meridianat $5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$, $25^{\circ}$ in the nasal and temporal areas using an open-field autorefractor. For analysis of post-op group, the group was classified by pre-op spherical equivalents of < -6.00 D and ${\geq}-6.00D$ as two post-op groups. Results: Pre-op spherical equivalent was $-4.56{\pm}0.92D$ (rang: -2.50 to -5.58 D) in post-op group 1, and $-7.09{\pm}0.96D$ (rang: -6.00 to -9.00 D) in post-op group 2. Spherical equivalent (M) in the emmetropes ranged from $-0.20{\pm}0.22D$ at center to $-0.64{\pm}0.83D$ at $25^{\circ}$ in the temporal visual field and to $-0.20{\pm}0.67D$ at $25^{\circ}$ in the nasal visual field; M in post-op group 1 ranged from $-0.16{\pm}0.29D$ at center to $-5.29{\pm}1.82D$ at $25^{\circ}$ in the temporal visual field and to $-4.48{\pm}1.88D$ at $25^{\circ}$ in the nasal visual field; M in post-op group 2 ranged from $-0.20{\pm}0.32D$ at center to $-7.98{\pm}2.08D$ at $25^{\circ}$ in the temporal visual field and to $-7.90{\pm}2.26D$ at $25^{\circ}$ in the nasal visual field. Among the three groups, there was no significant difference in M at central visual field (p=0.600) and at $5^{\circ}$ in the temporal visual field (p=0.647), whereas, there was significant difference in M at paracentral and peripheral visual field (p=0.000). Conclusions: Emmetropes had relatively constant refractive errors throughout the central and peripheral visual field and showed myopic peripheral defocus along the horizontal visual field. On the other hand, in myopic corneal refractive surgery group, there were significant differences in refractive errors between the central and peripheral visual field compared with differences in the central and peripheral refraction patterns of emmetropes.

키워드

참고문헌

  1. Jorge J, Almeida JB, Parafita MA. Refractive, biometric and topographic changes among Portuguese university science students: a 3-year longitudinal study. Ophthalmic Physiol Opt. 2007;27(3):287-294. https://doi.org/10.1111/j.1475-1313.2007.00475.x
  2. Lin LL, Shih YF, Hsiao CK, Chen CJ. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singapore. 2004;33(1):27-33.
  3. Woo WW, Lim KA, Yang H, Lim XY, Liew F, Lee YS, et al. Refractive errors in medical students in Singapore. Singapore Med J. 2004;45(10):470-474.
  4. Vitale S, Sperduto RD, Ferris FL 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. Arch Ophthalmol. 2009;127(12):1632-1639. https://doi.org/10.1001/archophthalmol.2009.303
  5. Morgan I, Rose K. How genetic is school myopia?. Prog Retin Eye Res. 2005;24(1):1-38. https://doi.org/10.1016/j.preteyeres.2004.06.004
  6. Atchison DA, Pritchard N, White SD, Griffiths AM. Influence of age on peripheral refraction. Vision Res. 2005;45(6):715-720. https://doi.org/10.1016/j.visres.2004.09.028
  7. Love J, Gilmartin B, Dunne MCM. Relative peripheral refractive error in adult myopia and emmetropia. Invest Ophthalmol Vis Sci. 2000;41(4):S302.
  8. Mutti DO, Sholtz RI, Friedman NE, Zadnik K. Peripheral refraction and ocular shape in children. Invest Ophthalmol Vis Sci. 2000;41(5):1022-1030.
  9. Seidemann A, Schaeffel F, Guirao A, Lopez-Gil N, Artal P. Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects. J Opt Soc Am A Opt Image Sci Vis. 2002;19(12):2363-2373. https://doi.org/10.1364/JOSAA.19.002363
  10. Millodot M. Effect of ametropia on peripheral refraction. Am J Optom Physiol Opt. 1981;58(9):691-695. https://doi.org/10.1097/00006324-198109000-00001
  11. Liu Y, Wildsoet C. The effect of two-zone concentric bifocal spectacle lenses on refractive error development and eye growth in young chicks. Invest Ophthalmol Vis Sci. 2011;52(2):1078-1086. https://doi.org/10.1167/iovs.10-5716
  12. Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2007;48(6):2510-2519. https://doi.org/10.1167/iovs.06-0562
  13. Schmid GF. Association between retinal steepness and central myopic shift in children. Optom Vis Sci. 2011;88(6):684-690. https://doi.org/10.1097/OPX.0b013e3182152646
  14. Smith EL 3rd, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res. 2009;49(19):2386-2392. https://doi.org/10.1016/j.visres.2009.07.011
  15. Smith EL 3rd, Kee CS, Ramamirtham R, Qiao-Grider Y, Hung LF. Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2005;46(11):3965-3972. https://doi.org/10.1167/iovs.05-0445
  16. Charman WN, Mountford J, Atchison DA, Markwell EL. Peripheral refraction in orthokeratology patients. Optom Vis Sci. 2006;83(9):641-648. https://doi.org/10.1097/01.opx.0000232840.66716.af
  17. Queiros A, Gonzalez-Meijome JM, Jorge J, Villa-Collar C, Gutierrez AR. Peripheral refraction in myopic patients after orthokeratology. Optom Vis Sci. 2010;87(5):323-329.
  18. Smith EL 3rd. The Charles F. Prentice award lecture 2010: A case for peripheral optical treatment strategies for myopia. Optom Vis Sci. 2011;88(9):1029-1044. https://doi.org/10.1097/OPX.0b013e3182279cfa
  19. Ma L, Atchison DA, Charman WN. Off-axis refraction and aberrations following conventional laser in situ keratomileusis. J Cataract Refract Surg. 2005;31(3):489-498. https://doi.org/10.1016/j.jcrs.2004.05.059
  20. Queiros A, Gonzalez-Meijome JM, Villa-Collar C, Gutierrez AR, Jorge J. Local steepening in peripheral corneal curvature after corneal refractive therapy and LASIK. Optom Vis Sci. 2010;87(6):432-439.
  21. Queiros A, Villa-Collar C, Jorge J, Gutierrez AR, Gonzalez-Meijome JM. Peripheral refraction in myopic eyes after LASIK surgery. Optom Vis Sci. 2012;89(7):977-983. https://doi.org/10.1097/OPX.0b013e31825ddf54
  22. Thibos LN, Wheeler W, Horner D. Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci. 1997;74(6):367-375. https://doi.org/10.1097/00006324-199706000-00019
  23. Stone RA, Flitcroft DI. Ocular shape and myopia. Ann Acad Med Singapore. 2004;33(1):7-15.
  24. Atchison DA, Pritchard N, Schmid KL. Peripheral refraction along the horizontal and vertical visual fields in myopia. Vision Res. 2006;46(8-9):1450-1458. https://doi.org/10.1016/j.visres.2005.10.023
  25. Hong SM. Measurements of central and peripherial axial length and refractive error. MA Thesis. Eulji University, Sungnam. 2012;30-33.
  26. Williams DR, Artal P, Navarro R, McMaho MJ, Brainard DH. Off-axis optical quality and retinal sampling in the human eye. Vision Res. 1996;36(8):1103-1114. https://doi.org/10.1016/0042-6989(95)00182-4
  27. Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children(LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res. 2005;30(1):71-80. https://doi.org/10.1080/02713680590907256
  28. Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol. 2009;93(9):1181-1185. https://doi.org/10.1136/bjo.2008.151365
  29. Anera RG, Villa C, Jimenez JR, Gutierrez R. Effect of LASIK and contact lens corneal refractive therapy on higher order aberrations and contrast sensitivity function. J Refract Surg. 2009;25(3):277-284.
  30. Kohnen T, Mahmoud K, Buhren J. Comparison of corneal higher-orderaberrations induced by myopic and hyperopic LASIK. Ophthalmology. 2005;112(10):1692.