DOI QR코드

DOI QR Code

Robust Extrapolation Design Criteria under the Uncertainty of Model and Error Structure

모형과 오차구조의 불확실성하에서의 강건 외삽 실험설계

  • Jang, Dae-Heung (Department of Statistics, Pukyong National University) ;
  • Kim, Youngil (School of Business and Economics, ChungAng University)
  • Received : 2015.04.22
  • Accepted : 2015.05.25
  • Published : 2015.06.30

Abstract

When we consider an optimal design to predict the response corresponding to the point outside the design region, we are extremely careful about choosing the design criteria for selecting the support points. The assumed model and its accompanying error structure should be assumed to extend beyond the design region for the selected design criteria to be valid. Thus, we modify the existing design criteria such as extrapolation-optimality to be suited to those situations. We propose some maximin approaches in this paper. Simple and quadratic regression models are tested to find the basic characteristics of such maximin approaches. Some main findings are discussed in the conclusion.

실험영역을 벗어나는 점에 해당하는 반응값 예측을 위한 최적실험을 고려할 때 실험에 필요한 받힘점을 위한 실험기준을 선택하는 경우 매우 신중하여야 한다. 왜냐하면 가정한 모형과 오차구도가 실험영역을 벗어나도 타당하다는 가정을 하여야 되기 때문이다. 따라서 기존문헌의 외삽최적의 실험기준을 이러한 상황에 맞게 설계될 수 있도록 수정하였다. 본 연구에서는 maximin방법을 적용하여 새로운 실험기준의 특징 및 강건성을 단순회귀모형과 이차회귀모형을 기준으로 검정하였다.

Keywords

References

  1. Berger, M. P. F. and Wong, W. K. (2009). An Introduction to Optimal Designs for Social and Biomedical Research, Wiley, New York.
  2. Chen, R. B., Wong, W. K. and Li, K. Y. (2008). Optimal minimax designs over a prespecified interval in a heteroscedastic polynomial model, Statistics and Probability Letter, 78, 1914-1921. https://doi.org/10.1016/j.spl.2008.01.059
  3. Dette, H. and Biedermann, S. (2003). Robust and efficient designs for the Michaelis-Menten model, Journal of the American Statistical Association, 98, 679-686. https://doi.org/10.1198/016214503000000585
  4. Dette, H. and Wong, W. K. (1996). Robust optimal extrapolation designs, Biometrika, 83, 667-680. https://doi.org/10.1093/biomet/83.3.667
  5. Fedorov, V. V. (1972). Optimal Experimental Design, Academic Press, New York.
  6. Hoel, P. G. and Levine, A. (1964). Optimal spacing and weighting in polynomial prediction, Annals of Statistics, 35, 1553-1560. https://doi.org/10.1214/aoms/1177700379
  7. Imhof, L. and Wong, W. K. (2000). A graphical method for finding maximin designs, Biometrics, 56, 113-117. https://doi.org/10.1111/j.0006-341X.2000.00113.x
  8. Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum problems, Canadian Journal of Mathematics, 12, 363-366. https://doi.org/10.4153/CJM-1960-030-4
  9. Kim, Y. I. and Jang, D. H. (2012). Hybrid constrained extrapolation experimental design, Communications for Statistical Applications and Methods, 19, 65-75. https://doi.org/10.5351/CKSS.2012.19.1.065
  10. Kim, Y. I. and Jang, D. H. (2014). The maximin robust design for the uncertainty of parameters of Michaelis-Menten Model, The Korean Journal of Applied Statistics, 27, 1269-1278. https://doi.org/10.5351/KJAS.2014.27.7.1269
  11. Lauter, E. (1974). Experimental planning in a class of models, Mathematishe Operationsforshung und Statistik, 5, 673-708.
  12. Wong, W. K. and Cook, R. D. (1993). Heteroscedastic G-optimal designs, Journal of the Royal Statistical Society, Series B, 55, 971-980.