DOI QR코드

DOI QR Code

An Application of Stream Classification Systems in the Nam River, Korea

남강에 대한 하천분류체계의 적용 연구

  • Kim, Kiheung (Department of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Jung, Heareyn (Department of Civil Engineering, Gyeongnam National University of Science and Technology)
  • 김기흥 (경남과학기술대학교 건설환경공과대학 토목공학과) ;
  • 정혜련 (경남과학기술대학교 건설환경공과대학 토목공학과)
  • Received : 2015.05.13
  • Accepted : 2015.06.23
  • Published : 2015.06.30

Abstract

Because streams have a great diversity of morphological features according to their reaches, it is necessary to classify the types of streams in order to assess their characteristics of channel. In addition, a quantitative assessment system for channel characteristics should be reflected in the stream type properties. Therefore, this study compares two stream classification system (Rosgen's and Yamamoto's) to review their applicability on Korean streams, and the two classification systems were applied on the Nam River. In order for the mean bed slope and the longitudinal connectivity of the provincial and national streams to be reflected in the assessment system of channel characteristics, the Yamamoto system is considered highly adaptable in the stream geomorphology side. In addition, it has been found the Rosgen system has a low correlation of bed slope compared to the Yamamoto system in the view of bed materials. On the other hand, the Yamamoto system was found to be capable of reflecting sediment sorting (hydraulic sorting) of the bed slope. According to the results obtained at the Nam River, the Rosgen system could not classify a type of stream by relationship between bed material and bed slope, but the Yamamoto system can verify the correlation of stream type. However, further review is needed with respect to the applicability of natural rivers. Three types of stream that can be applied to the assessment system of channel characteristics were proposed.

하천은 구간에 따라 하도의 지형학적인 특성이 다양하기 때문에 수리 및 하도 특성 평가를 위해서는 하천의 유형을 분류할 필요가 있다. 또한 하도 특성에 대한 정량적 평가체계는 하천 유형의 특성이 반영되어야 한다. 따라서, 본 연구에서는 하천분류체계의 한국 하천에 대한 적용성을 검토하기 위하여 Rosgen의 하천분류체계와 Yamamoto의 하천분류체계를 비교, 분석하였고, 남강을 사례로 그 적용성을 검토하였다. 하천 지형학적인 측면에서 우리나라의 지방 및 국가하천의 평균하상경사와 종적 연속성을 고려하기 위해서는 하천 지형학적인 측면에서 Yamamoto의 하천분류체계가 적용성이 높은 것으로 판단된다. 또한, 하상재료의 측면에서 Rosgen 분류체계가 Yamamoto의 분류체계보다는 하상경사와의 상관성이 낮게 나타났다. 반면에 Yamamoto의 분류체계는 하상경사에 따른 토사분급 (수리분급)을 반영할 수 있는 것으로 확인되었다. 남강에 대하여 얻어진 결과에 의하면, Rosgen의 분류체계로서는 하상경사와 하상재료의 관계로서 하천유형을 분류할 수 없으나, Yamamoto 분류체계는 그 상관성을 입증할 수 있었다. 다만, 자연하천에 대하여 추가적인 적용성 검토가 필요하다. 하도 특성 평가체계에 적용할 수 있는 3개의 하천유형을 결정하여 제시하였다.

Keywords

References

  1. Davis, W.M. 1899. The geographical cycle. The Geographical Journal 14: 481-504. https://doi.org/10.2307/1774538
  2. Ferguson, R.I. 1987. Hydraulic and sedimentary controls of channel pattern. In, Richardson, K.S. (ed.), River Channels. Blackwell, London, UK. pp. 129-158.
  3. Horton, R.E. 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America 56: 277-370.
  4. Lane, E.W. 1957. A Study of the Shape of Channels Formed by Natural Streams Flowing in Erodible Materials. Missouri River Division Sediment Series No.9, U.S. Army Engineer Division, Missouri River, Corps of Engineers, Omaha, Nebraska, USA.
  5. LAWA. 2000. Gewasserstrukturgutekartierung in der Bundesrepublik Deutschland - Verfahren fur kleine und mittelgrosse Fliessgewasser. Landerarbeitsgemeinschaft Wasser, Berlin, Germany (in German).
  6. Leopold, L.B. and Wolman, M.G. 1957. River channel patterns: braiding, meandering and straight. U.S. Geological Survey Professional Papers 282b: 39-85.
  7. Leopold, L.B., Wolman, M.G. and Miler, J.P. 1964. Fluvial Process in Geomorphology. W.H. Freeman and Company, San Francisco, USA.
  8. Parsons, M., Thoms, M. and Norris, R. 2002. Australian River Assessment System: AusRivAS Physical Assessment Protocol. Monitoring River Heath Initiative Technical Report no 22, Commonwealth of Australia and University of Canberra, Canberra, Australia.
  9. Montgomery, D.R. and Buffington, J.M. 1993. Channel Classification, Prediction of Channel Response, and Assessment of Channel Condition. Washington State Department of Natural Resources - Timber, Fish and Wildlife. Olympia, WA, USA.
  10. Rosgen, D.L. 1994. A classification of natural rivers. Catena 22: 169-199. https://doi.org/10.1016/0341-8162(94)90001-9
  11. Rosgen, D.L. 1996. Applied River Morphology. John Wiley & Sons, Chichester, UK.
  12. SEPA. 2003. Field Survey Guidance Manual: 2003 Version. Scottish Environment Protection Agency, Environmental Agency, Bristol, UK.
  13. Strahler, A.N. 1952. Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America 63: 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
  14. Thorne, C.R. 1997. Channel types and morphological classification. In, Thorne, C.R, Hey, R.D. and Newson, M.D. (eds.), Applied Fluvial Geomorphology for River Engineering and Management. Wiley, Chichester, UK. pp. 175-222.
  15. Yamamoto, K. 1988. Channel Specific Analysis. Public Works Research Institute Report 1394. Tsukuba, Japan. (in Japanese).
  16. Yamamoto, K. 2004. Structural Fluviology. Sankaidou, Tokyo, Japan (in Japanese).

Cited by

  1. Challenges and Prospects of Stream Restoration vol.2, pp.2, 2015, https://doi.org/10.17820/eri.2015.2.2.105
  2. 하천의 물리 환경성 평가체계의 적용 - 도시하천을 중심으로 - vol.20, pp.1, 2015, https://doi.org/10.13087/kosert.2017.20.1.55
  3. 하천의 물리 환경 평가체계의 구축 vol.51, pp.8, 2015, https://doi.org/10.3741/jkwra.2018.51.8.713