DOI QR코드

DOI QR Code

Soil Microbial Community Analysis in Large Patch (Rhizoctonia solani AG2-2 IV)

갈색퍼짐병 발병토양의 미생물 군집 분석

  • Lee, Jung Han (Korea Turfgrass Research Institute) ;
  • Min, Gyu Young (Daejung Golf Engineering Co. Ltd.) ;
  • Shim, Gyu Yul (Department of Plant Medicine and Institute of Agriculture and Life Science, Gyeonsang National University) ;
  • Jeon, Chang Wook (Southern Forest Resource Research Center, Korea Forest Research Institute) ;
  • Choi, Su min (Southern Forest Resource Research Center, Korea Forest Research Institute) ;
  • Han, Jeong Ji (Korea Turfgrass Research Institute) ;
  • Kwak, Youn-Sig (Department of Plant Medicine and Institute of Agriculture and Life Science, Gyeonsang National University)
  • Received : 2015.03.30
  • Accepted : 2015.05.26
  • Published : 2015.06.30

Abstract

Large patch, caused by Rhizoctonia solani AG2-2 IV, is a soil-born disease that is the most important of warm season turfgrass such as zoysia and Bermuda grass. This study was conducted to analysis of the soil microbial community structure on large patch. Center of the large patch (CLC), edge (CLE) and healthy (CLH) part of microbial communities were examined using metagenomics in Phylum level. Distribution trends of the rhizosphere microorganisms were similar to the order Proteobacteria, Acidobacteria, Chloroflexi, Firmicutes, Planctomycetes, Gemmatimonadetes, Nitrospira, Cyanobactria and Verrucomicrobia in soil collections. Contrastively Actinobacteria was more 56% abundant in healthy part soil (16%) than in the center (9.28%) or edge (10.84%) parts. Taxonomic distributions were compared among the CLC, CLE and CLH, total 6,948 OTUs were detected in the CLC, 6,505 OTUs for the CLE and 5,537 OTUs were detected in the CLE. Distributions of Actinobacteria OTUs were appeared 615 OTUs in the CLC, 709 OTUs in the CLE and 891 OTUs in the CLH. Among Actinobacteria, 382 OTUs were overlapped in the all soils. Not matched OTUs of CLH (286 OTUs) was detected 23 times higher than CLC (91 OTUs) and CLE (126 OTUs).

갈색퍼짐병은 토양 병원성균으로 Rhizoctonia solani AG2-2 IV가 원인균이다. 한국잔디나 버뮤다글라스와 같은 난지형 잔디에 가장 중요한 병으로 알려져 있다. 본 연구는 갈색퍼짐병 발병토양의 미생물 군집 분석으로 생물적 방제제로 이용할 근거자료를 수집하기 위하여 실시하였다. 갈색 퍼짐병의 중심부(CLC)와 가장자리(CLE), 건전부(CLH)에서 채취한 근권부 토양의 미생물 군집(bacterial composition)을 Metagenomics 데이터 분석으로 Phylum 수준에서 조사한 결과 미생물상은 Proteobacteria, Acidobacteria, Chloroflexi, Firmicutes, Planctomycetes, Gemmatimonadetes, Nitrospira, Cyanobactria, Verrucomicrobia, Bacteroidetes 등의 순으로 분포 경향은 모두 유사하게 나타났다. 이에 반해 Actinobacteria의 경우 중심부에서 9.28%, 가장자리에서 10.84%로 건전부에서의 16%에 비하여 5~6% 정도 높은 비율로 분포하는 결과가 나타났다. Phylum 수준에서 중복되는 미생물의 종류를 조사한 결과 전체적으로 중심부에서는 총 6,948 OTUs가 분포하였으며 가장자리와 건전부에서는 각각 6,505와 5,537 OTUs 분포하는 것으로 나타났다. Actinobacteria의 경우 중심부의 총 OTUs는 615였으며 가장자리와 건전부는 709와 891 OTUs로 나타났다. 또한 모두 중복되는 OTUs도 382로 높게 나타났으나 서로 중복되지 않는 OTUs는 건전부에서 286으로 중심부와 가장자리가 91과 126 OTUs인 것에 비하여 2~3배 이상으로 월등히 높게 나타났다.

Keywords

References

  1. Amann, R.I., Ludwig, W. and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169.
  2. Bray, J.R. and Curtis, J.T. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27:325-349. https://doi.org/10.2307/1942268
  3. Berdy, J. 2005. Bioactive microbial metabolites: A personal view. J. Antibiot. 58:1-26. https://doi.org/10.1038/ja.2005.1
  4. Cao, L., Qiu, Z., Dai, X., Tan, H., Lin, Y., et al. 2004. Isolation of endophytic actinobacteria from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J. Microbiol. Biotechnol. 20:501-504. https://doi.org/10.1023/B:WIBI.0000040406.30495.48
  5. Clarke, K.R. and Gorley, R.N. 2006. PRIMER V6: User Manual/ Tutorial. PRIMER-E Ltd, Plymouth, U.K. pp. 1-190.
  6. Curtis, T.P., Sloan, W.T. and Scannell, J.W. 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA. 99:10494-10499. https://doi.org/10.1073/pnas.142680199
  7. Daniel, R. 2005. The metagenomics of soil. Nat. Rev. Microbiol. 3:470-478. https://doi.org/10.1038/nrmicro1160
  8. De Leij, F.A.A.M., Whipps, J.M. and Lynch, J.M. 1993. The use of colony development for the characterization of bacterial communities in soil and on roots. Microb. Ecol. 27:81-97.
  9. Edwards, R.A., Rodriguez-Brito, B., Wegley, L., Haynes, M., Breitbart, M., et al. 2006. Using pyrosequencing to shed light on deep mine microbial ecology. BMC. Genomics. 7:57. https://doi.org/10.1186/1471-2164-7-57
  10. Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68:669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
  11. Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J. and Goodman, R.M. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5:245-249. https://doi.org/10.1016/S1074-5521(98)90108-9
  12. Islam, M.R., Jeong, Y.T., Ryu, Y.J., Song, C.H. and Lee, Y.S. 2009. Isolation, identification and optimal culture conditions of Streptomyces albidoflavus C247 producing antifungal agents against Rhizoctonia solani AG2-2. Mycobiology. 37:114-120. https://doi.org/10.4489/MYCO.2009.37.2.114
  13. Jung, J.Y., Lee, S.H., Kim, J.M., Park, M.S., Bae, J.W., et al. 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 77:2264-2274. https://doi.org/10.1128/AEM.02157-10
  14. Lane, D.J. 1991. 16S/23S rRNA Sequencing. pp. 115-175. In: Stackebrandt, E. and Goodfellow, M. (Eds.). Nucleic acid techniques in bacterial systematic. John Wiley & Sons, New York, USA.
  15. Mackelprang, R., Waldrop, K.M., DeAngelis, M.P., David, M.M., Chavarria, K.L., et al. 2011. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368-371. https://doi.org/10.1038/nature10576
  16. Muyzer, G., Hottentrager, S., Teske, A. and Wawer, C. 1996. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA. A new molecular approach to analyse the genetic diversity of mixed microbial communities. pp. 23. In: Akkermans, A. (Ed.). Molecular microbial ecology manual. Kluwer Academic Publ., Norwell, MA, USA.
  17. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65. https://doi.org/10.1038/nature08821
  18. Sanglier, J.J., Haag, H., Huck, T.A. and Fehr, T. 1993. Novel bioactive compounds from actinomycetes: a short review (1988-1992). Res. Microbiol. 144:633-642. https://doi.org/10.1016/0923-2508(93)90066-B
  19. Song, C.H., Islam, M.R., Chang, T. and Lee, Y.S. 2012. Isolation and identification of antagonistic bacteria for biological control of large patch disease of zoysiagrass caused by Rhizoctonia solani AG2-2 (IV) Asian J. Turfgrass Sci. 26:8-16.
  20. Torsvik, V., Sorheim, R. and Goksoyr, J. 1996. Total bacterial diversity in soil and sediment communitiese-a review. J. Ind. Microbiol. 17:170-178. https://doi.org/10.1007/BF01574690
  21. Woese, C.R. and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA. 74:5088-5090. https://doi.org/10.1073/pnas.74.11.5088
  22. Woese, C.R., Kandler, O. and Wheelis, M.L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA. 87:4576-4579. https://doi.org/10.1073/pnas.87.12.4576

Cited by

  1. Biological Control of Large Patch Disease by Streptomyces spp. in Turfgrass vol.5, pp.1, 2016, https://doi.org/10.5660/WTS.2016.5.1.29