양극산화 이산화티탄 나노튜브 광전극

  • 박민아 (한국과학기술연구원 광전하이브리드 연구센터) ;
  • 김진영 (과학기술연합대학원대학교)
  • Published : 2015.06.30

Abstract

이산화티탄 나노튜브와 같이 방향성을 가지고 성장한 반도체는 염료감응 태양전지의 새로운 박막구조로서 많은 관심을 받고 있다. 감응형 태양전지의 전력 생산에 필요한 빛 흡수, 전하주입, 전하운반체수송 등이 박막에서 이루어진다는 점에서 박막은 태양전지의 광전효율을 결정하는 중요한 요소이다. 특히 이산화티탄 나노튜브가 가지는 물리적, 전기적, 광학적 특성을 조절함으로써 이산화티탄 나노입자를 이용한 태양전지의 광전효율을 빠르게 따라잡을 수 있었다. 본고에서는 이산화티탄 나노튜브의 구조와 합성에 대해 검토하고 나노입자와 나노튜브 각각의 구조가 감응형 태양전지에서 빛의 수집과 전하 수집에 주는 영향에 대해 논의하고자 한다. 뿐만 아니라 나노튜브의 구조적, 전기적 특성에 따른 태양전지 제작과정의 차이를 알아본다.

Keywords

References

  1. Q. Wang, K. Zhu, N. R. Neale, and A. J. Frank, "Constructing Ordered Sensitized Heterojunctions: Bottom-Up Electrochemical Synthesis of p-Type Semiconductors in Oriented n-$TiO_2$ Nanotube Arrays," Nano Lett., 9 [2] 806-13 (2009). https://doi.org/10.1021/nl803513w
  2. M. Gratzel, "Conversion of Sunlight to Electric Power by Nanocrystalline Dye-sensitized Solar Cells," J. Photochem. Photobiol. A-Chem., 164 [1-3] 3-14 (2004). https://doi.org/10.1016/j.jphotochem.2004.02.023
  3. A. J. Frank, N. Kopidakis, and J. van de Lagemaat, "Electrons in Nanostructured $TiO_2$ Solar Cells: Transport, Recombination and Photovoltaic Properties," Coord. Chem. Rev., 248 [13-14] 1165-79 (2004). https://doi.org/10.1016/j.ccr.2004.03.015
  4. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, "Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented $TiO_2$ Nanotubes Arrays," Nano Lett., 7 [1] 69-74 (2007). https://doi.org/10.1021/nl062000o
  5. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, and A. B. Walker, "Dye-Sensitized Solar Cells Based on Oriented $TiO_2$ Nanotube Arrays: Transport, Trapping, and Transfer of Electrons," J. Am. Chem. Soc., 130 [40] 13364-72 (2008). https://doi.org/10.1021/ja804852z
  6. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Gratzel, "Application of Highly Ordered $TiO_2$ Nanotube Arrays in Flexible Dye-Sensitized Solar Cells," Acs Nano, 2 [6] 1113-16 (2008). https://doi.org/10.1021/nn800174y
  7. H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "A New Benchmark for $TiO_2$ Nanotube Array Growth by Anodization," J. Phys. Chem. C, 111 [20] 7235-41 (2007). https://doi.org/10.1021/jp070273h
  8. S. Berger, H. Tsuchiya, and P. Schmuki, "Transition from Nanopores to Nanotubes: Self-Ordered Anodic Oxide Structures on Titanium-Aluminides," Chem. Mat., 20 [10] 3245-47 (2008). https://doi.org/10.1021/cm8004024
  9. S. Bauer, S. Kleber, and P. Schmuki, "$TiO_2$ Nanotubes: Tailoring the Geometry in H3PO4/HF Electrolytes," Electrochem. Commun., 8 1321-25 (2006). https://doi.org/10.1016/j.elecom.2006.05.030
  10. K. Nakayama, T. Kubo, and Y. Nishikitani, "Electrophoretically Deposited $TiO_2$ Nanotube Light- Scattering Layers of Dye-Sensitized Solar Cells," Jpn. J. Appl. Phys., 47 [8] 6610-14 (2008). https://doi.org/10.1143/JJAP.47.6610
  11. V. Likodimos, T. Stergiopoulos, P. Falaras, J. Kunze, and P. Schmuki, "Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays: A Polarized Micro-Raman Investigation," J. Phys. Chem. C, 112 [33] 12687-96 (2008). https://doi.org/10.1021/jp8027462
  12. J. Wang, L. Zhao, V. S. -Y. Lin, and Z. Q. Lin, "Formation of Various $TiO_2$ Nanostructures from Electrochemically Anodized Titanium," J. Mater. Chem., 19 3682-87 (2009). https://doi.org/10.1039/b904247d
  13. K. Zhu, N. R. Neale, A. F. Halverson, J. Y. Kim, and A. J. Frank, "Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of $TiO_2$ Nanotube-Based Dye-Sensitized Solar Cells," J. Phys. Chem. C, 114 [32] 13433-41 (2010). https://doi.org/10.1021/jp102137x
  14. A. B. F. Martinson, J. W. Elam, J. Liu, M. J. Pellin, T. J. Marks, and J. T. Hupp, "Radial Electron Collection in Dye-Sensitized Solar Cells," Nano Lett., 8 [9] 2862-66 (2008). https://doi.org/10.1021/nl8015285
  15. J. A. Seabold, K. Shankar, R. H. T. Wilke, M. Paulose, O. K. Varghese, C. A. Grimes, and K. S. Choi, "Photoelectrochemical Properties of Heterojunction CdTe/$TiO_2$ Electrodes Constructed Using Highly Ordered $TiO_2$ Nanotube Arrays," Chem. Mater., 20 [16] 5266-73 (2008). https://doi.org/10.1021/cm8010666
  16. J. Y. Kim, J. H. Noh, K. Zhu, A. F. Halverson, N. R. Neale, S. Park, K. S. Hong, and A. J. Frank, "General Strategy for Fabricating Transparent $TiO_2$ Nanotube Arrays for Dye-Sensitized Photoelectrodes:Illumination Geometry and Transport Properties," Acs Nano, 5 [4] 2647-56 (2011). https://doi.org/10.1021/nn200440u
  17. J. Y. Kim, K. Zhu, N. R. Neale, and A. J. Frank, "Transparent $TiO_2$ Nanotube Array Photoelectrodes Prepared via Two-step Anodization," Nano Conv ergence., 1 1-9 (2014). https://doi.org/10.1186/s40580-014-0001-y
  18. O. K. Varghese, M. Paulose, and C. A. Grimes, "Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells," Nat. Nanotech., 4 [9] 592-97 (2009). https://doi.org/10.1038/nnano.2009.226
  19. Y. Shin and S. Lee, "Self-Organized Regular Arrays of Anodic $TiO_2$ Nanotubes," Nano Lett., 8 [10] 3171-73 (2008). https://doi.org/10.1021/nl801422w