페로브스카이트 태양전지 소자를 위한 광전극 기술

  • 김병조 (성균관대학교 신소재공학부) ;
  • 주연경 (성균관대학교 신소재공학부) ;
  • 권승리 (성균관대학교 신소재공학부) ;
  • 이동건 (성균관대학교 신소재공학부) ;
  • 진영운 (성균관대학교 신소재공학부) ;
  • 정현석 (성균관대학교 신소재공학부)
  • Published : 2015.06.30

Abstract

Keywords

References

  1. S. Nowak, "Trends 2014 in Photovoltaic Application," 1, 1, S. Nowak, 1-72, IEA International envergy agency, Sweden, 2014.
  2. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, 2 [591] 1-7 (2012).
  3. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, "High-performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange," Science, 1-8 (2015).
  4. N. G. Park, "Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell," J. Phys. Chem. Lett., 4 [15] 2423-29 (2013). https://doi.org/10.1021/jz400892a
  5. W. A. Laban and L. Etgar, "Depleted Hole Conductorfree Halide Iodide Heterojunction Solar Cells," Energy Environ. Sci., 6 3249-53 (2013). https://doi.org/10.1039/c3ee42282h
  6. J. H. Im, I. H. Jang, N. Pellet, M. Gratzel, and N. G. Park, "Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-efficiency Perovskite Solar Cells," Nature Nanotechnology, 9 927-32 (2014). https://doi.org/10.1038/nnano.2014.181
  7. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "6.5% Efficient Perovskite Quantum-dot-sensitized Solarlr Cell," Nanoscale, 3 4088-93 (2011). https://doi.org/10.1039/c1nr10867k
  8. J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, "Sequential Deposition as a Route to High-performance Perovskitesensitized Soalr Cells," Nature, 499 316-19 (2013). https://doi.org/10.1038/nature12340
  9. W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, "High-efficiency Solution-processed Perovskite Solar Cells with Millimeter-scale Grains," Science, 347 [6221] 522-25 (2015). https://doi.org/10.1126/science.aaa0472
  10. S. D. Sung, D. P. Ojha, J. S. You, J. Lee, J. Kim, and W. I. Lee, "50 nm Sized Spherical $TiO_2$ Nanocrystals for Highly Efficient Mesoscopic Perovskite Solar Cells," Nanoscale, 7 8898-906 (2015). https://doi.org/10.1039/C5NR01364J
  11. M. I. Dar, F. J. Ramos, Z. Xue, B. Liu, S. Ahmad, S. A. Shivashankar, M. K. Nazeeruddin, and M. Gratzel, "Photoanode Based on (001)-Oriented Anatase Nanoplatelets for Organic-inorganic Lead Iodide Perovskite Solar Cell," Chem. Mater., 26 4675-78 (2014). https://doi.org/10.1021/cm502185s
  12. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent Engineering for High-performance Inorganic-organic Hybrid Perovskite Solar Cells," Nature Materials, 13 897-903 (2014). https://doi.org/10.1038/nmat4014
  13. E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumuller, M. G. Christoforo, and M. D. McGehee, "Hysteresis and Transient Behavior in Current-voltage Measurements of Hybrid-perovskite Absorber Solar Cells," Energy Environ. Sci., 7 3690-98 (2014). https://doi.org/10.1039/C4EE02465F
  14. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, and W. Zhang, "Anomalous Hysteresis in Perovskite Solar Cells," J. Phys. Chem. Lett., 5 1511-15 (2014). https://doi.org/10.1021/jz500113x
  15. E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, and D. Cahen, "Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor)," Nano Lett., 14 1000-04 (2014). https://doi.org/10.1021/nl404454h
  16. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang " Interface Engineering of Highly Efficient Perovskite Solar Cells," Science, 345 [6196] 542-46 (2014). https://doi.org/10.1126/science.1254050
  17. D. H. Kim, G. S. Han, W. M. Seong, J. W. Lee, B. J. Kim, N. G. Park, K. S. Hong, S. Lee, and H. S. Jung, "Niobium Doping Effects on $TiO_2$ Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells," ChemSusChem (2015).
  18. Y. Ogomi, K. Kukihara, S. Qing, T. Toyoda, K. Yoshino, S. Pandey, H. Momose, and S. Hayase, "Control of Charge Dynamics through a Charge-Separation Interface for All-Solid Perovskite-Sensitized Solar Cells," ChemPhysChem, 15 1062-69 (2014). https://doi.org/10.1002/cphc.201301153
  19. G. S. Han, H. S. Chung, B. J. Kim, D. H. Kim, J. W. Lee, B. S. Swain, K. Mahmood, J. S. Yoo, N. G. Park, J. H. Lee, and H. S. Jung, "Retarding Charge Recombination in Perovskite Solarlr Cells using Ultrathin MgO-coated $TiO_2$ Nanoparticulate Films," J. Mater. Chem. A, 3 9160-64 (2015). https://doi.org/10.1039/C4TA03684K
  20. T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, "Overcoming Ultraviolet Light Instability of Sensitized $TiO_2$ with Meso-superstructured Organometal Tri-halide Perovskite Solar Cells," Nature Communications, 4 [2885] 1-8 (2013).
  21. S. Ito, S. Tanaka, K. Manabe, and H. Nishino, "Effect of Surface Blocking Layer of Sb2S3 on Nanocrystalline $TiO_2$ for CH3NH3PbI3 Perovskite Solar Cells," J. Phys. Chem. C, 118 16995-17000 (2014). https://doi.org/10.1021/jp500449z
  22. D. Y. Son, K. H. Bae, H. S. Kim, and N. G. Park, "Effects of Seed Layer on Growth of ZnO Nanorod and Performance of Perovskite solar Cell," J. Phys. Chem. C, 119 10321-28 (2015). https://doi.org/10.1021/acs.jpcc.5b03276
  23. S. S. Mali, C. S. Shim, H. K. Park, J. Heo, P. S. Patil, and C. K. Hong, "Ultrathin Atomic Layer Deposited $TiO_2$ for Surface Paasivation of Hydrothermally Grown 1D $TiO_2$ Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells," Chem. Mater., 27 1541-51 (2015). https://doi.org/10.1021/cm504558g
  24. J. W. Lee, S. H. Lee, H. S. Ko, J. Kwon, J. H. Park, S. M. Kang, N. Ahn, M. Choi, J. K. Kim, and N. G. Park, "Opto-electronic Properties of $TiO_2$ Nanohelices with Embedded $HC(NH_2)_2PbI_3$ Perovskite Solar Cells," J. Mater. Chem. A, 3 9179-86 (2015). https://doi.org/10.1039/C4TA04988H
  25. K. Mahmood, B. S. Swain, and A. Amassian, "Highly Efficient Hybrid Photovoltaics Based on Hyperb ranched Three-Dimensional $TiO_2$ Electron Transporting Materials," Adv. Mater., 27 2859-65 (2015). https://doi.org/10.1002/adma.201500336
  26. Y. Yu, J. Li, D. Geng, J. Wang, L. Zhang, T. L. Andrew, M. S. Arnold, and X. Wang, "Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures," ACS Nano, 9 [1] 564-72 (2015). https://doi.org/10.1021/nn5058672
  27. H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel, and N. G. Park, "High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile $TiO_2$ Nanorod and CH3NH3PbI3 Perovskite Sensitizer," Nano Lett., 13 2412-17 (2013). https://doi.org/10.1021/nl400286w
  28. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, 338 [6107] 643-47 (2012). https://doi.org/10.1126/science.1228604
  29. H. Huang, J. Shi, S. Lv, D. Li, Y. Luo, and Q. Meng, "Sprayed P25 Scaffolds for High-Efficiency Mesoscopic Perovskite Solar Cells," Chem. Commun. (2015).
  30. K. Mahmood, B. S. Swain, and H. S. Jung, "Controlling the Surface Nanostructure of ZnO and Al-doped ZnO Thin Films Using Electrostatic Spraying for Their Application in 12% Efficient Perovskite Solar Cells," Nanoscale, 6 9127-38 (2014). https://doi.org/10.1039/C4NR02065K
  31. Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, "Full Printable Processed Mesoscopic CH3NH3PbI3/$TiO_2$ Heterojunction Solar Cells with Carbon Counter Electrode," Scientific reports, 3 (2013).
  32. K. Hwang, Y. Jung, Y. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D. Kim, and D. Vak, "Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells," Adv. Mater., 27 1241-47 (2015). https://doi.org/10.1002/adma.201404598
  33. B. J. Kim, D. H. Kim, Y. Lee, H. Shin, G. S. Han, J. S. Hong, K. Mahmood, T. K. Ahn, Y Joo, K. S. Hong, N. Park, S. Lee, and H. S. Jung, "Highly Efficient and Bending Durable Perovskite Solar Cells: toward a Wearable Power Source," Energy Environ. Sci., 8 916-21 (2015). https://doi.org/10.1039/C4EE02441A
  34. D. Liu and T. L. Kelly, "Perovskite Solar Cells with a Planar Heterojunction Structure Prepared using Room-temperature Solution Processing Techniques," Nature photonics, 8 133-38 (2014). https://doi.org/10.1038/nphoton.2013.342
  35. J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J, Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, "Low-Temperature Processed Electron Collection Layers of Graphene/$TiO_2$ Nanocomposites in Thin Film Perovskite Solar Cells," Nano Lett., 14 724-30 (2014). https://doi.org/10.1021/nl403997a
  36. H. Jung, J. Park, E. S. Yoo, G. Han, H. S. Jung, M. J. Ko, S. Park, and W. Choe, "Functionalization of Nanomaterials by Non-thermal Large Area Atmospheric Pressure Plasmas: Application to Flexible Dye-sensitized Solar Cells," Nanoscale, 5 7825-30 (2013). https://doi.org/10.1039/c3nr01889j
  37. A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckleya, and D. G. Lidzey, "Efficient Planar Heterojunction Mixed-halide Perovskite Solar Cells Deposited via Spraydeposition," Energy Environ. Sci., 7 2944-50 (2014). https://doi.org/10.1039/C4EE01546K
  38. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, and H. Han, "A hole-conductor-free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability," Science, 345 295-98 (2014). https://doi.org/10.1126/science.1254763
  39. B. Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, "ZnO Nanostructures for Dye-Sensitized Solar Cells," Adv. Mater., 21 [41] 4087-108 (2009). https://doi.org/10.1002/adma.200803827
  40. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. V. Schilfgaarde, and A. Walsh, "Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells," Nano Lett., 14 2584-90 (2014). https://doi.org/10.1021/nl500390f
  41. J. H. Heo, M. S. You, M. H. Chang, W. Yin, T. K. Ahn, S. J. Lee, S. J. Sung, D. H. Kim, and S. H. Im, "Hysteresis-less Mesoscopic CH3NH3PbI3 Perovskite Hybrid Solar Cells by Introduction of Litreated $TiO_2$ electrode," Nano Evergy (2015).
  42. S. D. Stranks, G. E. Eperon, G. Grancini, C Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber," Science, 342 341-44 (2013). https://doi.org/10.1126/science.1243982
  43. Michael M. Lee,1 Joel Teuscher, Tsutomu Miyasaka, Takurou N. Murakami, and Henry J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, 338 643-47 (2012). https://doi.org/10.1126/science.1228604