3차원 헬릭스 나노 구조를 기반으로 하는 에너지 전환용 광전극

  • Published : 2015.06.30

Abstract

Keywords

References

  1. T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, and H. M. Upadhyaya, "Solar Photovoltaic Electricity: Current Status and Future Prospects," Sol. Energy, 85 [8] 1579-726 (2011). https://doi.org/10.1016/j.solener.2011.06.014
  2. M. Gratzel, "Recent Advances in Sensitized Mesoscopic Solar Cells," Accounts of Chem. Res., 42 [11] 1788-98 (2009). https://doi.org/10.1021/ar900141y
  3. H. -J. Wang, C. -P. Chen, and R. -J. Jeng, "Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review," Materials, 7 [4] (2014).
  4. S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kem, "Scattering Spherical Voids in Nanocryst alline $TiO_2$ - Enhancement of Efficiency in Dye-Sensitized Solar Cells," Chem. Commun., [15] 2011-13 (2005).
  5. V. E. Ferry, J. N Munday, and H. A Atwater, "Design Considerations for Plasmonic Photovoltaics," Adv. Mater., 22 [43] 4794-808 (2010). https://doi.org/10.1002/adma.201000488
  6. X. He, F. Gao, G. Tu, D. Hasko, S. Huttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. Huck, "Formation of Nanopatterned Polymer Blends in Photovoltaic Devices," Nano Lett., 10 [4] 1302-07 (2010). https://doi.org/10.1021/nl904098m
  7. D. CheW. Zhao and T. P. Russell, "P3HT Nanopillars for Organic Photovoltaic Devices Nanoimprinted by AAO Templates," ACS Nano, 6 [2] 1479-85 (2012). https://doi.org/10.1021/nn2043548
  8. A. L. Beaudry, R. T. Tucker, J. M. LaForge, M. T. Taschuk, and M. J. Brett, "Indium Tin Oxide Nanowhisker Morphology Control by Vapour-Liquid-Solid Glancing Agnle Deposition," Nanotechnology, 23 [10] 105608 (2012). https://doi.org/10.1088/0957-4484/23/10/105608
  9. H. Kwon, J. Ham, D. Y. Kim, S. J. Oh, S. Lee, S. H. Oh, E. F. Schubert, K. -G. Lim, T. -W. Lee, S. Kim, J. -L. Lee, and J. K. Kim, "Three-Dimensional Nanostructured Indium-Tin-Oxide Eelectrodes for Enhanced Performance of Bulk Heterojunction Organic Solar Cells," Adv. Energy Mater., 4 1301-566.
  10. B. O'Regan and M. Gratzel, "A Low-Cost, High-Efficiency Solar Cell based on Dye-Sensitized Colloidal $TiO_2$ Films," Nature, 353 [6346] 737-40 (1991). https://doi.org/10.1038/353737a0
  11. E. Gabrielsson, Molecular Engineering of D-${\pi}$-A Dyes for Dye-Sensitized Solar Cells, pp. 10, in Ph. D. Thesis, Royal Institute of Technology, Stockholm, 2014.
  12. A. Hagfeldt, G. Boscholoo, L. Sun, L. Kloo, and H. Pettersson, "Dye-Sensitized Solar Cells," Chem. Rev., 110 [11] 6595-663 (2010). https://doi.org/10.1021/cr900356p
  13. C. Prasittichai and J. T. Hupp, "Surface Modification of $SnO_2$ Photoelectrodes in Dye-Sensitized Solar Cells: Significants Improvements in Photovoltage via $Al_2O_3$ Atomic Layer Deposition," J. Phys. Chem. Lett., 1 [10] 1611-15 (2010). https://doi.org/10.1021/jz100361f
  14. M. Gratzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," Inorg. Chem., 44 [20] 6841-51 (2005). https://doi.org/10.1021/ic0508371
  15. Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe and G. Cao, "Applications of Light Scattering in Dye-Sensitized Solar Cells," Phys. Chem. Chem. Phys., 14 [43] 14982-92 (2012). https://doi.org/10.1039/c2cp43089d
  16. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, "Nanorod based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency," Adv. Mater., 20 [1] 54-58 (2008). https://doi.org/10.1002/adma.200701819
  17. K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, "Removing Structural Disorder from Oriented $TiO_2$ Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells," Nano Lett., 7 [12] 3739-46 (2007). https://doi.org/10.1021/nl072145a
  18. B. Liu and E. S. Aydil, "Growth of Oriented Single-Crystalline Rutile $TiO_2$ Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells," J. Am. Chem. Soc., 131 [11] 3985-90 (2009). https://doi.org/10.1021/ja8078972
  19. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, "Nanowire Dye-Sensitized Solar Cells," Nature Mat., 4 [6] 455-59 (2005). https://doi.org/10.1038/nmat1387
  20. X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, and T. E. Mallouk, "Rapid Charge Transport in Dye-Sensitized Solar Cells Made From Vertically Aligned Single-Crystal Rutile $TiO_2$ Nanowires," Angew. Chemie., 124 [11] 2781-84 (2012). https://doi.org/10.1002/ange.201108076
  21. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, "Fast Electron Transport in Metal Organic Vapor Deposition Grown Dye-Sensitized ZnO Nanorod Solar Cells," J. Phys. Chem. B, 110 [33] 16159-61 (2006). https://doi.org/10.1021/jp062865q
  22. M. Wang, J. Bai, F. L. Formal, S. J. Moon, L. C. Ha, R. H. Baker, C. Gratzel, S. M. Zakeeruddin, and M. Gratzel, "Solid-State Dye-Sensitized Solar Cells Using Ordered $TiO_2$ Nanorods on Transparent Conductive Oxide as Photoanodes," J. Phys. Chem. C, 116 [5] 3266-73 (2012). https://doi.org/10.1021/jp209130x
  23. S. Lee, I. J. Park, D. H. Kim, W. M. Sung, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung, and K. S. Hong, "Crystallographically Preferred Oriented $TiO_2$ Nanotube Arrays for Efficient Photovoltaic Energy Conversion," Ener. Environ. Sci., 5 [7] 7989-95 (2012). https://doi.org/10.1039/c2ee21697c
  24. A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, "ZnO Nanotube Based Dye-Sensitized Solar Cells," Nano Lett., 7 [8] 2183-87 (2007). https://doi.org/10.1021/nl070160+
  25. S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, "Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cells," Nano Lett., 11 [2] 666-71 (2011). https://doi.org/10.1021/nl1037962
  26. Y. Bai, H. Yu, Z. Li, R. Amal, G. Q. Lu, and L. Wang, "In-situ Growth of a ZnO Nanowire Network Within a $TiO_2$ Nanoparticle Film for Enhanced Dye-Sensitized Solar Cell Performance," Adv.Mater., 24 [43] 5850-56 (2012). https://doi.org/10.1002/adma.201201992
  27. S. H. Lee, H. Jin, D.-Y. Kim, K. Song, S. H. Oh, S. Kim, E. F. Schubert, and J. K. Kim, "Enhanced Power Conversion Efficiency of Quantum Dot Sensitized Solar Cells with Near Single-Crystalline $TiO_2$ Nanohelixes Used as Photoanodes," Opt. Exp., 22 [S3] A867-79 (2014). https://doi.org/10.1364/OE.22.00A867
  28. S. H. Lee, J. Kwon, D. Y. Kim, K. Song, S. H. Oh, J. Cho, E. F. Schubert, J. H. Park, and J. K. Kim, "Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cells with Multifunctional Photoanodes Based on a Three-Dimensional $TiO_2$ Nanohelix Array," Sol. Energ. Mat. Sol. C, 132 47-55 (2015). https://doi.org/10.1016/j.solmat.2014.08.007
  29. X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim, and J. H. Park, "Efficient Photoelectrochemical Hydrogen Production from Bismuth Vanadate-decorated Tungsten Trioxide Helix nanostructures," Nature Communications, 5 4775 (2014). https://doi.org/10.1038/ncomms5775