DOI QR코드

DOI QR Code

Chitooligosaccharide Prolongs Vase Life of Cut Roses by Decreasing Reactive Oxygen Species

  • Jing, Hong-juan (Lian-hua St.100, College of Biological Engineering, Henan University of Technology) ;
  • Li, Huan-qing (Lian-hua St.100, College of Biological Engineering, Henan University of Technology)
  • Received : 2014.11.11
  • Accepted : 2015.02.26
  • Published : 2015.06.30

Abstract

Chitooligosaccharide (COS), as antioxidant, extensively applied to food and juice preservation. In the present study, influences of COS on vase life and ornamental value of cut roses were investigated. Results showed that vase life of cut roses treated by COS was longer 6.4 days than one of control and ornamental character of cut roses was improved effectively by COS. The increase of vase life and ornamental value were chiefly governed by that COS improved water absorption capacity of cut roses. Besides that, COS decreased the contents of superoxide anion and hydrogen peroxide and lowered the levels of malondialdehyde in turn during the senescence process of cut roses. That was because that COS not only enhanced activities of antioxidant enzymes glutathione reductase, but also improved reduced glutathione contents in petals of cut rose. Therefore, COS could be used in commercial preservatives to improve the longevity of cut roses.

Keywords

References

  1. Abreu, M.E. and S. Munne-Bosch. 2007. Photo- and antioxidant protection and salicylic acid accumulation during post-anthesis leaf senescence in Salvia lanigera grown under Mediterranean climate. Physiol. Plant. 131:590-598. https://doi.org/10.1111/j.1399-3054.2007.00985.x
  2. Bokov, A., A. Chaudhuri, and A. Richardson. 2004. The role of oxidative damage and stress in aging. Mech. Ageing. Dev. 125: 811-826. https://doi.org/10.1016/j.mad.2004.07.009
  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Bravo-Osuna, I., G. Millotti, C. Vauthier, and G. Ponchel. 2007. In vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly (isobutyl cyanoacrylate) core-shell nanoparticles. Int. J. Pharm. 338(1-2):284-290. https://doi.org/10.1016/j.ijpharm.2007.01.039
  5. Dat, J., S. Vandenabeele, E. Vranova, M. Van Montagu, D. Inze, and F. Van Breusegem. 2000. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57:779-795. https://doi.org/10.1007/s000180050041
  6. Fang, I.M., C.H. Yang, C.M. Yang, and M.S. Chen. 2013. Chitosan oligosaccharides attenuates oxidative-stress related retinal degeneration in rats. PloS One. 8(10):e77323. https://doi.org/10.1371/journal.pone.0077323
  7. Ghezzi, P., V. Bonetto, and M. Fratelli. 2005. Thiol-disulfidebalance: from the concept of oxidative stress to that of redox regulation. Antioxid. Red. Sign. 7:964-972. https://doi.org/10.1089/ars.2005.7.964
  8. Grennan, A.K. 2008. A transcriptomic footprint of reactive oxygen species. Plant Physiol. 148:1187-1188. https://doi.org/10.1104/pp.104.900274
  9. Hodges, D.M., J.M. DeLong, C.F. Forney, and R.K. Prange. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604-611. https://doi.org/10.1007/s004250050524
  10. Je, J.Y., P.J. Park, and S.K. Kim. 2004. Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food. Chem. Toxicol. 42: 381-387. https://doi.org/10.1016/j.fct.2003.10.001
  11. Jeon, Y.J. and S.K. Kim. 2000. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohyd. Polym. 41:133-141. https://doi.org/10.1016/S0144-8617(99)00084-3
  12. Jeon, Y.J. and S.K. Kim. 2001. Effect of antimicrobial activity by chitosan oligosaccharide N-conjugated with asparagine. J. Microbiol. Biotechol. 11:281-286.
  13. Jing, H., X. Tan, J.Xu, G. Zhou, and G. Li. 2011. Cinnamaldehyde prolongs the vase life of cut rose through alleviating oxidative stress. Euro. J. Hortic. Sci. 76:69-74.
  14. Joodi, G., N. Ansari, and F. Khodagholi. 2011. Chitooligosaccharidemediated neuroprotection is associated with modulation of Hsps expression and reduction of MAPK phosphorylation. Int. J. Biol. Macromol. 48:726-735. https://doi.org/10.1016/j.ijbiomac.2011.02.011
  15. Kim, S.K. and N. Rajapakse. 2005. Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohyd. Res. 62:357-368.
  16. Kumar, N. and G.C. Srivastava. 2008. Anti-oxidant metabolism during rose (Rosa hybrida L.) petal senescence. J. Hortic. Sci. Biotechol. 83:755-759. https://doi.org/10.1080/14620316.2008.11512456
  17. Kumar, N., G.C. Srivastava, and K. Dixt, 2008. Senescence in rose (Rosa hybrida L.): The role of endogenous antioxidant system. J. Hortic. Sci. Biotechol. 83:125-131. https://doi.org/10.1080/14620316.2008.11512357
  18. Kumar, N., G.C. Srivastava, and K. Dixt. 2007. Role of superoxide dismutases during petal senescence in rose in Rose (Rosa hybrida L.). J. Hort. Sci. Biotechol. 82:673-678.
  19. Liu, H.T., W.M. Li, G. Xu, X.Y. Li, X.F. Bai, P. Wei, C. Yu, and Y.G. Du. 2009. Chitosan oligosaccharides attenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelial cells. Pharmacol. Res. 59:167-175. https://doi.org/10.1016/j.phrs.2008.12.001
  20. Mendis, E., M.M. Kim, N. Rajapakse, and S.K. Kim. 2007. An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides. Life Sci. 80:2118-2127. https://doi.org/10.1016/j.lfs.2007.03.016
  21. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  22. Oracz, K, H.El-Maarous Bouteau, J.M. Farrant, K. Cooper, M. Belghazi, C. Job, D. Job, F. Corbineau, and C. Bailly. 2007. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 50:452-465. https://doi.org/10.1111/j.1365-313X.2007.03063.x
  23. Patterson, B.D., E.A. MacRae, and I.B. Ferguson. 1984. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal. Biochem. 139:487-492. https://doi.org/10.1016/0003-2697(84)90039-3
  24. Pompodakis, N.E. and D.C. Joyce. 2003. Abscisic acid analogue effects on vase life and leaf crisping of cut Baccara roses. Aust. J. Exp. Agric. 43:425-428. https://doi.org/10.1071/EA02036
  25. Rinalducci, S., L. Murgiano, and L. Zolla. 2008. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation. J. Exp. Bot. 59:3781-3801. https://doi.org/10.1093/jxb/ern252
  26. Rogers, H.J. 2012. Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant, Cell & Environ. 35:217-233. https://doi.org/10.1111/j.1365-3040.2011.02373.x
  27. Schaedle, M. and J.A. Bassham. 1977. Chloroplast glutathione reductase. Plant Physiol. 59:1011-1012. https://doi.org/10.1104/pp.59.5.1011
  28. Scosndalios, J.G. 1994. Regulation and properties of plant catalases, p. 275-315. In: C.H. Foyer and P.M. Mullineaux (eds.). Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton. FL. USA.
  29. Smith, I.K., T.L. Vierheller, and C. Thorne. 1989. Properties and functions of glutathione reductase in plants. Physiol. Plant. 77:449-456. https://doi.org/10.1111/j.1399-3054.1989.tb05666.x
  30. Szalai, G., T. Kellős, G. Galiba, and G. Kocsy. 2009. Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J. Plant Growth Regul. 28:66-80. https://doi.org/10.1007/s00344-008-9075-2
  31. Thadathil, N. and S.P. Velappan. 2014. Recent developments in chitosanase research and its biotechnological applications: A review. Food Chem. 150:392-399. https://doi.org/10.1016/j.foodchem.2013.10.083
  32. van Doorn, W.G. and E.J. Woltering. 2008. Physiology and molecular biology of petal senescence. J. Exp. Bot. 59:453-480. https://doi.org/10.1093/jxb/erm356
  33. Xia, W., P. Liu, J. Zhang, and J. Chen. 2011. Biological activities of chitosan and chitooligosaccharides. Food Hydrocol. 25:170-179. https://doi.org/10.1016/j.foodhyd.2010.03.003
  34. Xue, J., F. Yang and J. Gao. 2009. Isolation of Rh-TIP1;1, an aquaporin gene and its expression in rose flowers in response to ethylene and water deficit. Postharvest Biol. Technol. 51:407-413. https://doi.org/10.1016/j.postharvbio.2008.08.011
  35. Zhang, S. J. Du, H. Jin, W. Li, Y. Liang, B. Geng, S. Li, C. Zhang, and C. Tang. Endogenous sulfur dioxide aggravates myocardial injury in isolated rat heart with ischemia and reperfusion. Transplantation 87:517-524.

Cited by

  1. Chitosan Effects on Plant Systems vol.17, pp.7, 2016, https://doi.org/10.3390/ijms17070996