DOI QR코드

DOI QR Code

Role of Temperature and Gibberellic Acid in Stimulating Embryo Elongation and Radicle Emergence of Hepatica asiatica Nakai Seeds

  • Chon, Young Shin (Department of Horticultural Science, Gyeongnam National University of Science and Technology) ;
  • Jeong, Kyeong Jin (Graduate School, Gyeongnam National University of Science and Technology) ;
  • Lee, Sang Woo (Department of Horticultural Science, Gyeongnam National University of Science and Technology) ;
  • Yun, Jae Gill (Department of Horticultural Science, Gyeongnam National University of Science and Technology)
  • Received : 2014.09.25
  • Accepted : 2015.01.29
  • Published : 2015.06.30

Abstract

This research was performed to determine the temperature requirements for embryo growth and radicle emergence of Hepatica asiatica Nakai, a perennial herb native to Korea. Seed viability, embryo growth, and radicle emergence were monitored in seeds exposed to various temperatures (10, 15, $20^{\circ}C$ and $30{\rightarrow}15^{\circ}C$). Laboratory experiments at various temperatures revealed that (1) embryo elongation occurred effectively between 10 and $15^{\circ}C$; (2) radicle emergence occurred only at $15^{\circ}C$; (3) a warm stratification (2-8 weeks at $30^{\circ}C$) was not required for embryo elongation and radicle emergence, and led to inhibition of radicle emergence; (4) application of gibberellic acid ($GA_3$) promoted embryo growth, but not radicle emergence. These results suggested that H. asiatica seeds have two separate mechanisms to overcome dormancy, either by $GA_3$ (morphological dormancy) or temperature (physiological dormancy), and warm stratification is not involved in breaking radicle dormancy. These findings indicate that H. asiatica seeds have morphophysiological dormancy.

Keywords

References

  1. Anderson, N. and D.H. Byrne. 2007. Methods for Rosa germination. Acta Hortic. 751:503-507.
  2. Atwater, B.R. 1980. Germination, dormancy and morphology of the seeds of herbaceous ornamental plants. Seed Sci. Technol. 8:523-573.
  3. Baskin, J.M. and C.C. Baskin. 1985. Epicotyl dormancy in seeds of Cimicifuga racemosa and Hepatica acutiloba. Bull. Torrey Bot. Club 112:253-257. https://doi.org/10.2307/2996540
  4. Bewley, J.D. 1997. Seed germination and dormancy. Plant Cell 9:1055-1066. https://doi.org/10.1105/tpc.9.7.1055
  5. Brown, L.B. 1996. Applied principles of horticultural science. Butterworth-Heinemann, Oxford.
  6. Chi, H.J. and S.Y. Lee. 1981. Phytochemical survey of higher plants in Korea. Kor. J. Pharmacogn. 12:75-76.
  7. Da Silva, E.A., P.E. Toorop, J. Nijsse, J.D. Bewley, and H.W. Hilhorst. 2005. Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo. J. Expt. Bot. 56:1029-1038. https://doi.org/10.1093/jxb/eri096
  8. Engell, K. 1995. Embryo morphology of the Ranunculaceae. Plant Systematics and Evol. (Suppl.) 9:207-216.
  9. Frost-Christensen, H. 1974. Embryo development in ripe seeds of Eranthis hiemalis and its relation to gibberellic acid. Physiol. Plant 30:200-205. https://doi.org/10.1111/j.1399-3054.1974.tb03644.x
  10. Hara, H. 1952. Hepatica nobilis Schreb var. asiatica (Nakai) Hara. J. Fac. Sci. Uni. Tokyo 3:51.
  11. Hara, H. and S. Kurosawa. 1958. Differentiation within Anemone hepatica L. of Japan. J. Jpn. Bot. 331:9-18.
  12. Hong, J.U., 1995. Physiological and ecological study of Hepatica asiatica N. (I) Comm. Dev. Res. 4:1-8.
  13. Karssen, C.M., S. Zagorski, J. Kepczynski, and S.P.C. Groot. 1989. Key role for endogenous gibberellins in the control of seed germination. Ann. Bot. 63:71-80.
  14. Kim, J.H. and N.S. Lee. 1994. Allozyme variation in Hepatica asiatica and H. insularis. Kor. J. Plant Tax. 24:79-93.
  15. Larson, L.A. 1968. The effect soaking pea seeds with or without seedcoats has on seedling growth. Plant Physiol. 43:255-259. https://doi.org/10.1104/pp.43.2.255
  16. Lee, C.B. 1982. An illustrated guide to Korean flora. Hyangmunsa, Seoul.
  17. Lee, M.J., K.H. Lee, and K.S. Chae. 2005. Differentiation and development of flower bud in Hepatica asiatica Nakai. Kor. J. Hort. Sci. Technol. 23:451-454.
  18. Lim, J.H. and C.K. Sang. 1990. Growth condition of Hepatica asiatica Nakai in the habitats for the cultivation as floricultural crop. J. Kor. Soc. Hort. Sci. 31:81-89.
  19. Lim, Y.H., M.H. Kim, M.S. Byun, and K.W. Kim. 2007. Effects of $GA_3$ and chilling treatment on growth and flowering in perennial Korean native plants. Flower Res. J. 15:123-129.
  20. Mamo, N., M. Mihretu, M. Fekadu, M. Tigabu, and D. Teketay. 2006. Variation in seed and germination characteristics among Juniperus procera populations in Ethiopia. Forest Ecol. Mgt. 225:320-327. https://doi.org/10.1016/j.foreco.2006.01.026
  21. Martin, A.C. 1946. The comparative internal morphology of seeds. Am. Midl. Nat. 36:513-660. https://doi.org/10.2307/2421457
  22. Nakai, T. 1937. Japanese Hepatica. J. Jpn. Bot.13:227-243.
  23. Nomizu, T., Y. Niimi, and E. Watanabe. 2004. Embryo development and seed germination of Hepatica nobilis Schreber var. japonica as affected by temperature after sowing. Sci. Hortic. 99:345-352. https://doi.org/10.1016/S0304-4238(03)00115-8
  24. Song, J.S., Y.D. Chang, H.H. Chung, C.S. Bang, and J.Y. Kim. 2003. Floral initiation and flowering response of potted Hepatica asiatica to low Temperature and $GA_3$. J. Kor. Soc. Hort. Sci. 44:928-930.
  25. Tamura, M. 1993. Ranunculaceae, p. 563-583. In: Kubitzki, K., Rohwer, J.G., Bittrich, V. (Eds.), The families and genera of vascular plants II. Flowering Plants - Dicotyledons. Springer, Berlin.

Cited by

  1. Effect of Seed Collection Stage and Temperature on Germination of Deutzia paniculata Nakai, the Korea Native Species vol.34, pp.3, 2015, https://doi.org/10.12972/kjhst.20160038