DOI QR코드

DOI QR Code

Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition

  • Kim, Hyun Ji (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University) ;
  • Choi, Won Jun (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University) ;
  • Lee, Chang Hoon (BK21PLUS R-FIND team, College of Pharmacy, Dongguk University)
  • 투고 : 2015.03.23
  • 심사 : 2015.05.04
  • 발행 : 2015.07.01

초록

Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis.

키워드

참고문헌

  1. Akita, Y., Kawasaki, H., Imajoh-Ohmi, S., Fukuda, H., Ohno, S., Hirano, H., Ono, Y. and Yonekawa, H. (2007) Protein kinase C epsilon phosphorylates keratin 8 at Ser8 and Ser23 in GH4C1 cells stimulated by thyrotropin-releasing hormone. FEBS J. 274, 3270-3285. https://doi.org/10.1111/j.1742-4658.2007.05853.x
  2. Alam, H., Gangadaran, P., Bhate, A. V., Chaukar, D. A., Sawant, S. S., Tiwari, R., Bobade, J., Kannan, S., D'Cruz A, K., Kane, S. and Vaidya, M. M. (2011) Loss of keratin 8 phosphorylation leads to increased tumor progression and correlates with clinico-pathological parameters of OSCC patients. PLoS One 6, e27767. https://doi.org/10.1371/journal.pone.0027767
  3. Ando, S., Tokui, T., Yano, T. and Inagaki, M. (1996) Keratin 8 phosphorylation in vitro by cAMP-dependent protein kinase occurs within the amino- and carboxyl-terminal end domains. Biochem. Biophys. Res. Commun. 221, 67-71. https://doi.org/10.1006/bbrc.1996.0546
  4. Baribault, H., Blouin, R., Bourgon, L. and Marceau, N. (1989) Epidermal growth factor-induced selective phosphorylation of cultured rat hepatocyte 55-kD cytokeratin before filament reorganization and DNA synthesis. J. Cell Biol. 109, 1665-1676. https://doi.org/10.1083/jcb.109.4.1665
  5. Beil, M., Micoulet, A., von Wichert, G., Paschke, S., Walther, P., Omary, M. B., Van Veldhoven, P. P., Gern, U., Wolff-Hieber, E., Eggermann, J., Waltenberger, J., Adler, G., Spatz, J. and Seufferlein, T. (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat. Cell Biol. 5, 803-811. https://doi.org/10.1038/ncb1037
  6. Bhardwaj, A., Singh, S., Srivastava, S. K., Arora, S., Hyde, S. J., Andrews, J., Grizzle, W. E. and Singh, A. P. (2014) Restoration of PPP2CA expression reverses epithelial-to-mesenchymal transition and suppresses prostate tumour growth and metastasis in an orthotopic mouse model. Br. J. Cancer 110, 2000-2010. https://doi.org/10.1038/bjc.2014.141
  7. Borradori, L. and Sonnenberg, A. (1999) Structure and function of hemidesmosomes: more than simple adhesion complexes. J. Invest. Dermatol. 112, 411-418. https://doi.org/10.1046/j.1523-1747.1999.00546.x
  8. Burcham, P. C., Raso, A. and Henry, P. J. (2014) Airborne acrolein induces keratin-8 (Ser-73) hyperphosphorylation and intermediate filament ubiquitination in bronchiolar lung cell monolayers. Toxicology 319, 44-52. https://doi.org/10.1016/j.tox.2014.02.010
  9. Busch, T., Armacki, M., Eiseler, T., Joodi, G., Temme, C., Jansen, J., von Wichert, G., Omary, M. B., Spatz, J. and Seufferlein, T. (2012) Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells. J. Cell Sci. 125, 2148-2159. https://doi.org/10.1242/jcs.080127
  10. Byun, H. J., Kang, K. J., Park, M. K., Lee, H. J., Kang, J. H., Lee, E. J., Kim, Y. R., Kim, H. J., Kim, Y. W., Jung, K. C., Kim, S. Y. and Lee, C. H. (2013) Ethacrynic acid inhibits sphingosylphosphorylcholineinduced keratin 8 phosphorylation and reorganization via transglutaminase- 2 inhibition. Biomol. Ther. 21, 338-342. https://doi.org/10.4062/biomolther.2013.066
  11. Cadrin, M., McFarlane-Anderson, N., Aasheim, L. H., Kawahara, H., Franks, D. J., Marceau, N. and French, S. W. (1992) Differential phosphorylation of CK8 and CK18 by 12-O-tetradecanoyl-phorbol-13-acetate in primary cultures of mouse hepatocytes. Cell. Signal. 4, 715-722. https://doi.org/10.1016/0898-6568(92)90052-A
  12. Chang, T. H., Huang, H. D., Ong, W. K., Fu, Y. J., Lee, O. K., Chien, S. and Ho, J. H. (2014) The effects of actin cytoskeleton perturbation on keratin intermediate filament formation in mesenchymal stem/stromal cells. Biomaterials 35, 3934-3944. https://doi.org/10.1016/j.biomaterials.2014.01.028
  13. Chen, Y. L., Lin, S. Z., Chang, W. L., Cheng, Y. L. and Harn, H. J. (2005) Requirement for ERK activation in acetone extract identified from Bupleurum scorzonerifolium induced A549 tumor cell apoptosis and keratin 8 phosphorylation. Life Sci. 76, 2409-2420. https://doi.org/10.1016/j.lfs.2004.09.044
  14. Chou, C. C., Lee, K. H., Lai, I. L., Wang, D., Mo, X., Kulp, S. K., Shapiro, C. L. and Chen, C. S. (2014) AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res. 74, 4783-4795. https://doi.org/10.1158/0008-5472.CAN-14-0135
  15. Coulombe, P. A. and Omary, M. B. (2002) 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 14, 110-122. https://doi.org/10.1016/S0955-0674(01)00301-5
  16. Coussens, L. M., Fingleton, B. and Matrisian, L. M. (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387-2392. https://doi.org/10.1126/science.1067100
  17. Cross, S. E., Jin, Y. S., Rao, J. and Gimzewski, J. K. (2007) Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780-783. https://doi.org/10.1038/nnano.2007.388
  18. Duan, S., Yao, Z., Zhu, Y., Wang, G., Hou, D., Wen, L. and Wu, M. (2009) The Pirh2-keratin 8/18 interaction modulates the cellular distribution of mitochondria and UV-induced apoptosis. Cell Death Differ. 16, 826-837. https://doi.org/10.1038/cdd.2009.12
  19. Feng, L., Zhou, X., Liao, J. and Omary, M. B. (1999) Pervanadate-mediated tyrosine phosphorylation of keratins 8 and 19 via a p38 mitogen-activated protein kinase-dependent pathway. J. Cell Sci. 112, 2081-2090.
  20. Fortier, A. M., Riopel, K., Desaulniers, M. and Cadrin, M. (2010a) Novel insights into changes in biochemical properties of keratins 8 and 18 in griseofulvin-induced toxic liver injury. Exp. Mol. Pathol. 89, 117-125. https://doi.org/10.1016/j.yexmp.2010.07.004
  21. Fortier, A. M., Van Themsche, C., Asselin, E. and Cadrin, M. (2010b) Akt isoforms regulate intermediate filament protein levels in epithelial carcinoma cells. FEBS Lett. 584, 984-988. https://doi.org/10.1016/j.febslet.2010.01.045
  22. Friedl, P., Wolf, K. and Lammerding, J. (2011) Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 55-64. https://doi.org/10.1016/j.ceb.2010.10.015
  23. Fuchs, E. and Raghavan, S. (2002) Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 3, 199-209. https://doi.org/10.1038/nrg758
  24. Gerlitz, G. and Bustin, M. (2011) The role of chromatin structure in cell migration. Trends Cell Biol. 21, 6-11. https://doi.org/10.1016/j.tcb.2010.09.002
  25. Getsios, S., Huen, A. C. and Green, K. J. (2004) Working out the strength and flexibility of desmosomes. Nat. Rev. Mol. Cell Biol. 5, 271-281. https://doi.org/10.1038/nrm1356
  26. Goebeler, M., Roth, J., van den Bos, C., Ader, G. and Sorg, C. (1995) Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments. Biochem. J. 309, 419-424. https://doi.org/10.1042/bj3090419
  27. Govaere, O., Komuta, M., Berkers, J., Spee, B., Janssen, C., de Luca, F., Katoonizadeh, A., Wouters, J., van Kempen, L. C., Durnez, A., Verslype, C., De Kock, J., Rogiers, V., van Grunsven, L. A., Topal, B., Pirenne, J., Vankelecom, H., Nevens, F., van den Oord, J., Pinzani, M. and Roskams, T. (2014) Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut 63, 674-685. https://doi.org/10.1136/gutjnl-2012-304351
  28. Green, K. J. and Simpson, C. L. (2007) Desmosomes: new perspectives on a classic. J. Invest. Dermatol. 127, 2499-2515. https://doi.org/10.1038/sj.jid.5701015
  29. Grin, B., Mahammad, S., Wedig, T., Cleland, M. M., Tsai, L., Herrmann, H. and Goldman, R. D. (2012) Withaferin a alters intermediate filament organization, cell shape and behavior. PLoS One 7, e39065. https://doi.org/10.1371/journal.pone.0039065
  30. Guo, L., Degenstein, L., Dowling, J., Yu, Q. C., Wollmann, R., Perman, B. and Fuchs, E. (1995) Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81, 233-243. https://doi.org/10.1016/0092-8674(95)90333-X
  31. Haines, R. L. and Lane, E. B. (2012) Keratins and disease at a glance. J. Cell Sci. 125, 3923-3928. https://doi.org/10.1242/jcs.099655
  32. Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  33. Hatsell, S. and Cowin, P. (2001) Deconstructing desmoplakin. Nat. Cell Biol. 3, E270-272. https://doi.org/10.1038/ncb1201-e270
  34. Hatzfeld, M. and Weber, K. (1990) The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: use of site-specific mutagenesis and recombinant protein expression. J. Cell Biol. 110, 1199-1210. https://doi.org/10.1083/jcb.110.4.1199
  35. He, T., Stepulak, A., Holmstrom, T. H., Omary, M. B. and Eriksson, J. E. (2002) The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J. Biol. Chem. 277, 10767-10774. https://doi.org/10.1074/jbc.M111436200
  36. Herrmann, H. and Aebi, U. (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr. Opin. Cell Biol. 12, 79-90. https://doi.org/10.1016/S0955-0674(99)00060-5
  37. Hiraga, R., Kato, M., Miyagawa, S. and Kamata, T. (2013) Nox4-derived ROS signaling contributes to TGF-beta-induced epithelial-mesenchymal transition in pancreatic cancer cells. Anticancer Res. 33, 4431-4438.
  38. Hu, X., Wu, X., Xu, J., Zhou, J., Han, X. and Guo, J. (2009) Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia. BMC Neurosci. 10, 74. https://doi.org/10.1186/1471-2202-10-74
  39. Kakehashi, A., Inoue, M., Wei, M., Fukushima, S. and Wanibuchi, H. (2009) Cytokeratin 8/18 overexpression and complex formation as an indicator of GST-P positive foci transformation into hepatocellular carcinomas. Toxicol. Appl. Pharmacol. 238, 71-79. https://doi.org/10.1016/j.taap.2009.04.018
  40. Kalluri, R. and Neilson, E. G. (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776-1784. https://doi.org/10.1172/JCI200320530
  41. Kalluri, R. and Weinberg, R. A. (2009) The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420-1428. https://doi.org/10.1172/JCI39104
  42. Kang, J. H., Park, M. K., Kim, H. J., Kim, Y. and Lee, C. H. (2011) Isolation of soil microorganisms having antibacterial activity and antimigratory effects on sphingosylphosphorylcholine-induced migration of PANC-1 cells. Toxicol. Res. 27, 241-246. https://doi.org/10.5487/TR.2011.27.4.241
  43. Karantza, V. (2011) Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30, 127-138. https://doi.org/10.1038/onc.2010.456
  44. Kayser, J., Haslbeck, M., Dempfle, L., Krause, M., Grashoff, C., Buchner, J., Herrmann, H. and Bausch, A. R. (2013) The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks. Biophys. J. 105, 1778-1785. https://doi.org/10.1016/j.bpj.2013.09.007
  45. Khapare, N., Kundu, S. T., Sehgal, L., Sawant, M., Priya, R., Gosavi, P., Gupta, N., Alam, H., Karkhanis, M., Naik, N., Vaidya, M. M. and Dalal, S. N. (2012) Plakophilin3 loss leads to an increase in PRL3 levels promoting K8 dephosphorylation, which is required for transformation and metastasis. PLoS One 7, e38561. https://doi.org/10.1371/journal.pone.0038561
  46. Kim, E. J., Kim, H. J., Park, M. K., Kang, G. J., Byun, H. J., Lee, H. and Lee, C. H. (2015) Cardamonin suppresses TGF-beta1-induced epithelial mesenchymal transition via restoring protein phosphatase 2A expression. Biomol. Ther. 23, 141-148. https://doi.org/10.4062/biomolther.2014.117
  47. Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J. and Stoter, M. (2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell. Signal. 17, 675-689. https://doi.org/10.1016/j.cellsig.2004.12.011
  48. Kolsch, A., Windoffer, R. and Leube, R. E. (2009) Actin-dependent dynamics of keratin filament precursors. Cell Motil. Cytoskeleton 66, 976-985. https://doi.org/10.1002/cm.20395
  49. Komine, M., Freedberg, I. M. and Blumenberg, M. (1996) Regulation of epidermal expression of keratin K17 in inflammatory skin diseases. J. Invest. Dermatol. 107, 569-575. https://doi.org/10.1111/1523-1747.ep12582820
  50. Koster, J., Geerts, D., Favre, B., Borradori, L. and Sonnenberg, A. (2003) Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly. J. Cell Sci. 116, 387-399. https://doi.org/10.1242/jcs.00241
  51. Kouklis, P. D., Hutton, E. and Fuchs, E. (1994) Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J. Cell Biol. 127, 1049-1060. https://doi.org/10.1083/jcb.127.4.1049
  52. Koyanagi, N., Imai, T., Arii, J., Kato, A. and Kawaguchi, Y. (2014) Role of herpes simplex virus 1 Us3 in viral neuroinvasiveness. Microbiol. Immunol. 58, 31-37. https://doi.org/10.1111/1348-0421.12108
  53. Ku, N. O., Azhar, S. and Omary, M. B. (2002a) Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. J. Biol. Chem. 277, 10775-10782. https://doi.org/10.1074/jbc.M107623200
  54. Ku, N. O., Liao, J. and Omary, M. B. (1998) Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J. 17, 1892-1906. https://doi.org/10.1093/emboj/17.7.1892
  55. Ku, N. O., Michie, S., Resurreccion, E. Z., Broome, R. L. and Omary, M. B. (2002b) Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc. Natl. Acad. Sci. U.S.A. 99, 4373-4378. https://doi.org/10.1073/pnas.072624299
  56. Ku, N. O. and Omary, M. B. (1997) Phosphorylation of human keratin 8 in vivo at conserved head domain serine 23 and at epidermal growth factor-stimulated tail domain serine 431. J. Biol. Chem. 272, 7556-7564. https://doi.org/10.1074/jbc.272.11.7556
  57. Ku, N. O., Toivola, D. M., Strnad, P. and Omary, M. B. (2010) Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat Cell Biol. 12, 876-885. https://doi.org/10.1038/ncb2091
  58. Ku, N. O., Zhou, X., Toivola, D. M. and Omary, M. B. (1999) The cytoskeleton of digestive epithelia in health and disease. Am. J. Physiol. 277, G1108-1137.
  59. Kuga, T., Kume, H., Kawasaki, N., Sato, M., Adachi, J., Shiromizu, T., Hoshino, I., Nishimori, T., Matsubara, H. and Tomonaga, T. (2013) A novel mechanism of keratin cytoskeleton organization through casein kinase Ialpha and FAM83H in colorectal cancer. J. Cell Sci. 126, 4721-4731. https://doi.org/10.1242/jcs.129684
  60. Lee, E. J., Park, M. K., Kim, H. J., Kang, J. H., Kim, Y. R., Kang, G. J., Byun, H. J. and Lee, C. H. (2014) 12-O-tetradecanoylphorbol-13-acetate induces keratin 8 phosphorylation and reorganization via expression of transglutaminase-2. Biomol. Ther. 22, 122-128. https://doi.org/10.4062/biomolther.2014.007
  61. Lee, J. C., Schickling, O., Stegh, A. H., Oshima, R. G., Dinsdale, D., Cohen, G. M. and Peter, M. E. (2002) DEDD regulates degradation of intermediate filaments during apoptosis. J. Cell Biol. 158, 1051-1066. https://doi.org/10.1083/jcb.200112124
  62. Leube, R. E., Moch, M., Kolsch, A. and Windoffer, R. (2011) "Panta rhei": Perpetual cycling of the keratin cytoskeleton. Bioarchitecture 1, 39-44. https://doi.org/10.4161/bioa.1.1.14815
  63. Liao, J., Lowthert, L. A. and Omary, M. B. (1995) Heat stress or rotavirus infection of human epithelial cells generates a distinct hyperphosphorylated form of keratin 8. Exp. Cell Res. 219, 348-357. https://doi.org/10.1006/excr.1995.1238
  64. Liao, J. and Omary, M. B. (1996) 14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J. Cell Biol. 132, 345-357. https://doi.org/10.1083/jcb.132.3.345
  65. Liovic, M., Mogensen, M. M., Prescott, A. R. and Lane, E. B. (2003) Observation of keratin particles showing fast bidirectional movement colocalized with microtubules. J. Cell Sci. 116, 1417-1427. https://doi.org/10.1242/jcs.00363
  66. Loschke, F., Seltmann, K., Bouameur, J. E. and Magin, T. M. (2015) Regulation of keratin network organization. Curr. Opin. Cell Biol. 32C, 56-64.
  67. Lv, Q., Hua, F. and Hu, Z. W. (2012) DEDD, a novel tumor repressor, reverses epithelial-mesenchymal transition by activating selective autophagy. Autophagy 8, 1675-1676. https://doi.org/10.4161/auto.21438
  68. Ma, Q., Guin, S., Padhye, S. S., Zhou, Y. Q., Zhang, R. W. and Wang, M. H. (2011) Ribosomal protein S6 kinase (RSK)-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein. Mol. Cancer 10, 66. https://doi.org/10.1186/1476-4598-10-66
  69. Mellad, J. A., Warren, D. T. and Shanahan, C. M. (2011) Nesprins LINC the nucleus and cytoskeleton. Curr. Opin. Cell Biol. 23, 47-54. https://doi.org/10.1016/j.ceb.2010.11.006
  70. Menon, M. B., Schwermann, J., Singh, A. K., Franz-Wachtel, M., Pabst, O., Seidler, U., Omary, M. B., Kotlyarov, A. and Gaestel, M. (2010) p38 MAP kinase and MAPKAP kinases MK2/3 cooperatively phosphorylate epithelial keratins. J. Biol. Chem. 285, 33242-33251. https://doi.org/10.1074/jbc.M110.132357
  71. Mizuuchi, E., Semba, S., Kodama, Y. and Yokozaki, H. (2009) Downmodulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression. Int. J. Cancer 124, 1802-1810. https://doi.org/10.1002/ijc.24111
  72. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B. and Krepler, R. (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11-24. https://doi.org/10.1016/0092-8674(82)90400-7
  73. Murata, T., Goshima, F., Nishizawa, Y., Daikoku, T., Takakuwa, H., Ohtsuka, K., Yoshikawa, T. and Nishiyama, Y. (2002) Phosphorylation of cytokeratin 17 by herpes simplex virus type 2 US3 protein kinase. Microbiol. Immunol. 46, 707-719. https://doi.org/10.1111/j.1348-0421.2002.tb02755.x
  74. Neumann, S. and Noegel, A. A. (2014) Nesprins in cell stability and migration. Adv. Exp. Med. Biol. 773, 491-504. https://doi.org/10.1007/978-1-4899-8032-8_22
  75. Omary, M. B., Ku, N. O., Liao, J. and Price, D. (1998) Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell. Biochem. 31, 105-140.
  76. Omary, M. B., Ku, N. O., Strnad, P. and Hanada, S. (2009) Toward unraveling the complexity of simple epithelial keratins in human disease. J. Clin. Invest. 119, 1794-1805. https://doi.org/10.1172/JCI37762
  77. Omary, M. B., Ku, N. O., Tao, G. Z., Toivola, D. M. and Liao, J. (2006) "Heads and tails" of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem. Sci. 31, 383-394. https://doi.org/10.1016/j.tibs.2006.05.008
  78. Omary, M. B., Ku, N. O. and Toivola, D. M. (2002) Keratins: guardians of the liver. Hepatology 35, 251-257. https://doi.org/10.1053/jhep.2002.31165
  79. Oshima, R. G. (1982) Developmental expression of murine extraembryonic endodermal cytoskeletal proteins. J. Biol. Chem. 257, 3414-3421.
  80. Padmakumar, V. C., Libotte, T., Lu, W., Zaim, H., Abraham, S., Noegel, A. A., Gotzmann, J., Foisner, R. and Karakesisoglou, I. (2005) The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J. Cell Sci. 118, 3419-3430. https://doi.org/10.1242/jcs.02471
  81. Pan, X., Hobbs, R. P. and Coulombe, P. A. (2013) The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr. Opin. Cell Biol. 25, 47-56. https://doi.org/10.1016/j.ceb.2012.10.018
  82. Pan, X., Kane, L. A., Van Eyk, J. E. and Coulombe, P. A. (2011) Type I keratin 17 protein is phosphorylated on serine 44 by p90 ribosomal protein S6 kinase 1 (RSK1) in a growth- and stress-dependent fashion. J. Biol. Chem. 286, 42403-42413. https://doi.org/10.1074/jbc.M111.302042
  83. Paramio, J. M., Segrelles, C., Ruiz, S. and Jorcano, J. L. (2001) Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Mol. Cell. Biol. 21, 7449-7459. https://doi.org/10.1128/MCB.21.21.7449-7459.2001
  84. Park, M. K., Lee, H. J., Shin, J., Noh, M., Kim, S. Y. and Lee, C. H. (2011) Novel participation of transglutaminase-2 through c-Jun Nterminal kinase activation in sphingosylphosphorylcholine-induced keratin reorganization of PANC-1 cells. Biochim. Biophys. Acta 1811, 1021-1029. https://doi.org/10.1016/j.bbalip.2011.07.007
  85. Park, M. K., Park, Y., Shim, J., Lee, H. J., Kim, S. and Lee, C. H. (2012) Novel involvement of leukotriene B(4) receptor 2 through ERK activation by PP2A down-regulation in leukotriene B(4)-induced keratin phosphorylation and reorganization of pancreatic cancer cells. Biochim. Biophys. Acta 1823, 2120-2129. https://doi.org/10.1016/j.bbamcr.2012.09.004
  86. Park, M. K., You, H. J., Lee, H. J., Kang, J. H., Oh, S. H., Kim, S. Y. and Lee, C. H. (2013) Transglutaminase-2 induces N-cadherin expression in TGF-beta1-induced epithelial mesenchymal transition via c-Jun-N-terminal kinase activation by protein phosphatase 2A down-regulation. Eur. J. Cancer 49, 1692-1705. https://doi.org/10.1016/j.ejca.2012.11.036
  87. Pavlaki, M. and Zucker, S. (2003) Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev. 22, 177-203. https://doi.org/10.1023/A:1023047431869
  88. Perng, M. D., Cairns, L., van den, I. P., Prescott, A., Hutcheson, A. M. and Quinlan, R. A. (1999) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J. Cell Sci. 112 (Pt 13), 2099-2112.
  89. Rajgor, D., Mellad, J. A., Soong, D., Rattner, J. B., Fritzler, M. J. and Shanahan, C. M. (2014) Mammalian microtubule P-body dynamics are mediated by nesprin-1. J. Cell Biol. 205, 457-475. https://doi.org/10.1083/jcb.201306076
  90. Ridge, K. M., Linz, L., Flitney, F. W., Kuczmarski, E. R., Chou, Y. H., Omary, M. B., Sznajder, J. I. and Goldman, R. D. (2005) Keratin 8 phosphorylation by protein kinase C delta regulates shear stressmediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J. Biol. Chem. 280, 30400-30405. https://doi.org/10.1074/jbc.M504239200
  91. Rotty, J. D. and Coulombe, P. A. (2012) A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair. J. Cell Biol. 197, 381-389. https://doi.org/10.1083/jcb.201107078
  92. Schmidt, A. and Jager, S. (2005) Plakophilins--hard work in the desmosome, recreation in the nucleus? Eur. J. Cell Biol. 84, 189-204. https://doi.org/10.1016/j.ejcb.2004.12.020
  93. Scott, G. K., Atsriku, C., Kaminker, P., Held, J., Gibson, B., Baldwin, M. A. and Benz, C. C. (2005) Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation. Mol. Pharmacol. 68, 606-615.
  94. Seltmann, K., Roth, W., Kroger, C., Loschke, F., Lederer, M., Huttelmaier, S. and Magin, T. M. (2013) Keratins mediate localization of hemidesmosomes and repress cell motility. J. Invest. Dermatol. 133, 181-190. https://doi.org/10.1038/jid.2012.256
  95. Sivaramakrishnan, S., Schneider, J. L., Sitikov, A., Goldman, R. D. and Ridge, K. M. (2009) Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C zeta. Mol. Biol. Cell 20, 2755-2765. https://doi.org/10.1091/mbc.E08-10-1028
  96. Snider, N. T. and Omary, M. B. (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 15, 163-177. https://doi.org/10.1038/nrm3753
  97. Snider, N. T., Park, H. and Omary, M. B. (2013) A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 protein insolubility and filament organization. J. Biol. Chem. 288, 31329-31337. https://doi.org/10.1074/jbc.M113.502724
  98. Snider, N. T., Weerasinghe, S. V., Iniguez-Lluhi, J. A., Herrmann, H. and Omary, M. B. (2011) Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation. J. Biol. Chem. 286, 2273-2284. https://doi.org/10.1074/jbc.M110.171314
  99. Sonnenberg, A. and Liem, R. K. (2007) Plakins in development and disease. Exp. Cell Res. 313, 2189-2203. https://doi.org/10.1016/j.yexcr.2007.03.039
  100. Srikanth, B., Vaidya, M. M. and Kalraiya, R. D. (2010) O-GlcNAcylation determines the solubility, filament organization, and stability of keratins 8 and 18. J. Biol. Chem. 285, 34062-34071. https://doi.org/10.1074/jbc.M109.098996
  101. Steinert, P. M. (1988) The dynamic phosphorylation of the human intermediate filament keratin 1 chain. J. Biol. Chem. 263, 13333-13339.
  102. Stroka, K. M. and Konstantopoulos, K. (2014) Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am. J. Physiol. Cell Physiol. 306, C98-C109. https://doi.org/10.1152/ajpcell.00289.2013
  103. Sugimoto, M., Inoko, A., Shiromizu, T., Nakayama, M., Zou, P., Yonemura, S., Hayashi, Y., Izawa, I., Sasoh, M., Uji, Y., Kaibuchi, K., Kiyono, T. and Inagaki, M. (2008). The keratin-binding protein Albatross regulates polarization of epithelial cells. J. Cell Biol. 183, 19-28. https://doi.org/10.1083/jcb.200803133
  104. Sun, Z., Guo, Y. S., Yan, S. J., Wan, Z. Y., Gao, B., Wang, L., Liu, Z. H., Gao, Y., Samartzis, D., Lan, L. F., Wang, H. Q. and Luo, Z. J. (2013) CK8 phosphorylation induced by compressive loads underlies the downregulation of CK8 in human disc degeneration by activating protein kinase C. Lab. Invest. 93, 1323-1330. https://doi.org/10.1038/labinvest.2013.122
  105. Suozzi, K. C., Wu, X. and Fuchs, E. (2012) Spectraplakins: master orchestrators of cytoskeletal dynamics. J. Cell Biol. 197, 465-475. https://doi.org/10.1083/jcb.201112034
  106. Suresh, S. (2007) Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413-438. https://doi.org/10.1016/j.actbio.2007.04.002
  107. Tao, G. Z., Toivola, D. M., Zhou, Q., Strnad, P., Xu, B., Michie, S. A. and Omary, M. B. (2006) Protein phosphatase-2A associates with and dephosphorylates keratin 8 after hyposmotic stress in a siteand cell-specific manner. J. Cell Sci. 119, 1425-1432. https://doi.org/10.1242/jcs.02861
  108. Toivola, D. M., Boor, P., Alam, C. and Strnad, P. (2015) Keratins in health and disease. Curr. Opin. Cell Biol. 32C, 73-81.
  109. Toivola, D. M., Goldman, R. D., Garrod, D. R. and Eriksson, J. E. (1997) Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. J. Cell Sci. 110, 23-33.
  110. Toivola, D. M., Zhou, Q., English, L. S. and Omary, M. B. (2002) Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells. Mol. Biol. Cell 13, 1857-1870. https://doi.org/10.1091/mbc.01-12-0591
  111. Velasco, G., Gomez del Pulgar, T., Carling, D. and Guzman, M. (1998) Evidence that the AMP-activated protein kinase stimulates rat liver carnitine palmitoyltransferase I by phosphorylating cytoskeletal components. FEBS Lett. 439, 317-320. https://doi.org/10.1016/S0014-5793(98)01400-8
  112. Wang, H., Quah, S. Y., Dong, J. M., Manser, E., Tang, J. P. and Zeng, Q. (2007a) PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res. 67, 2922-2926. https://doi.org/10.1158/0008-5472.CAN-06-3598
  113. Wang, L., Srinivasan, S., Theiss, A. L., Merlin, D. and Sitaraman, S. V. (2007b) Interleukin-6 induces keratin expression in intestinal epithelial cells: potential role of keratin-8 in interleukin-6-induced barrier function alterations. J. Biol. Chem. 282, 8219-8227. https://doi.org/10.1074/jbc.M604068200
  114. Wang, Q., Griffin, H., Southern, S., Jackson, D., Martin, A., McIntosh, P., Davy, C., Masterson, P. J., Walker, P. A., Laskey, P., Omary, M. B. and Doorbar, J. (2004) Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J. Virol. 78, 821-833. https://doi.org/10.1128/JVI.78.2.821-833.2004
  115. Windoffer, R., Beil, M., Magin, T. M. and Leube, R. E. (2011) Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J. Cell Biol. 194, 669-678. https://doi.org/10.1083/jcb.201008095
  116. Woll, S., Windoffer, R. and Leube, R. E. (2005) Dissection of keratin dynamics: different contributions of the actin and microtubule systems. Eur. J. Cell Biol. 84, 311-328. https://doi.org/10.1016/j.ejcb.2004.12.004
  117. Woll, S., Windoffer, R. and Leube, R. E. (2007) p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells. J. Cell Biol. 177, 795-807. https://doi.org/10.1083/jcb.200703174
  118. Yano, T., Tokui, T., Nishi, Y., Nishizawa, K., Shibata, M., Kikuchi, K., Tsuiki, S., Yamauchi, T. and Inagaki, M. (1991) Phosphorylation of keratin intermediate filaments by protein kinase C, by calmodulin-dependent protein kinase and by cAMP-dependent protein kinase. Eur. J. Biochem. 197, 281-290. https://doi.org/10.1111/j.1432-1033.1991.tb15909.x
  119. Zhao, L., Geng, H., Liang, Z. F., Zhang, Z. Q., Zhang, T., Yu, X. and Zhong, C. Y. (2015) Benzidine induces epithelial-mesenchymal transition in human uroepithelial cells through ERK1/2 pathway. Biochem. Biophys. Res. Commun. 459, 643-649. https://doi.org/10.1016/j.bbrc.2015.02.163
  120. Zhou, Q., Cadrin, M., Herrmann, H., Chen, C. H., Chalkley, R. J., Burlingame, A. L. and Omary, M. B. (2006) Keratin 20 serine 13 phosphorylation is a stress and intestinal goblet cell marker. J. Biol. Chem. 281, 16453-16461. https://doi.org/10.1074/jbc.M512284200
  121. Zhou, Q., Snider, N. T., Liao, J., Li, D. H., Hong, A., Ku, N. O., Cartwright, C. A. and Omary, M. B. (2010) Characterization of in vivo keratin 19 phosphorylation on tyrosine-391. PLoS One 5, e13538. https://doi.org/10.1371/journal.pone.0013538
  122. Zhou, X., Liao, J., Hu, L., Feng, L. and Omary, M. B. (1999) Characterization of the major physiologic phosphorylation site of human keratin 19 and its role in filament organization. J. Biol. Chem. 274, 12861-12866. https://doi.org/10.1074/jbc.274.18.12861

피인용 문헌

  1. The effect and mechanism of bufalin on regulating hepatocellular carcinoma cell invasion and metastasis via Wnt/β-catenin signaling pathway vol.48, pp.1, 2016, https://doi.org/10.3892/ijo.2015.3250
  2. Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells vol.1863, pp.6, 2016, https://doi.org/10.1016/j.bbamcr.2016.02.007
  3. Novel effects of FTY720 on perinuclear reorganization of keratin network induced by sphingosylphosphorylcholine: Involvement of protein phosphatase 2A and G-protein-coupled receptor-12 vol.775, 2016, https://doi.org/10.1016/j.ejphar.2016.02.024
  4. Effects of cerulein on keratin 8 phosphorylation and perinuclear reorganization in pancreatic cancer cells: Involvement of downregulation of protein phosphatase 2A and alpha4 vol.31, pp.12, 2016, https://doi.org/10.1002/tox.22186
  5. Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation vol.1862, pp.9, 2016, https://doi.org/10.1016/j.bbadis.2016.05.010
  6. Proteomics Analysis Reveals Involvement of Krt17 in Areca Nut-Induced Oral Carcinogenesis vol.15, pp.9, 2016, https://doi.org/10.1021/acs.jproteome.6b00138
  7. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways regulated by site-specific phosphorylation of Keratin-8 in skin squamous cell carcinoma derived cell line vol.17, pp.7, 2017, https://doi.org/10.1002/pmic.201600254
  8. Plasticity of tumor cell invasion: governance by growth factors and cytokines 2016, https://doi.org/10.1093/carcin/bgw098
  9. Leukotriene B4 induces EMT and vimentin expression in PANC-1 pancreatic cancer cells: Involvement of BLT2 via ERK2 activation vol.115, 2016, https://doi.org/10.1016/j.plefa.2016.10.009
  10. Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2 vol.25, pp.6, 2017, https://doi.org/10.4062/biomolther.2016.228
  11. Insulin receptor plays a central role in skin carcinogenesis by regulating cytoskeleton assembly vol.33, pp.2, 2019, https://doi.org/10.1096/fj.201800847R
  12. YDJC Induces Epithelial-Mesenchymal Transition via Escaping from Interaction with CDC16 through Ubiquitination of PP2A vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/3542537
  13. Multifaceted role of keratins in epithelial cell differentiation and transformation vol.44, pp.2, 2019, https://doi.org/10.1007/s12038-019-9864-8
  14. Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment vol.11, pp.11, 2015, https://doi.org/10.3390/cancers11111696
  15. The Functions and Applications of Epithelial Keratins in Normal Tissues and Tumors vol.9, pp.3, 2015, https://doi.org/10.12677/pi.2020.93017
  16. Acute effects of cell stretch on keratin filaments in A549 lung cells vol.34, pp.8, 2015, https://doi.org/10.1096/fj.201903160rr
  17. Generation of a tissue‐specific transgenic model for K8 phosphomutants: A tool to investigate the role of K8 phosphorylation during skin carcinogenesis in vivo vol.45, pp.8, 2015, https://doi.org/10.1002/cbin.11611
  18. Porcine pancreatic ductal epithelial cells transformed with KRASG12D and SV40T are tumorigenic vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-92852-2