참고문헌
- Akita, Y., Kawasaki, H., Imajoh-Ohmi, S., Fukuda, H., Ohno, S., Hirano, H., Ono, Y. and Yonekawa, H. (2007) Protein kinase C epsilon phosphorylates keratin 8 at Ser8 and Ser23 in GH4C1 cells stimulated by thyrotropin-releasing hormone. FEBS J. 274, 3270-3285. https://doi.org/10.1111/j.1742-4658.2007.05853.x
- Alam, H., Gangadaran, P., Bhate, A. V., Chaukar, D. A., Sawant, S. S., Tiwari, R., Bobade, J., Kannan, S., D'Cruz A, K., Kane, S. and Vaidya, M. M. (2011) Loss of keratin 8 phosphorylation leads to increased tumor progression and correlates with clinico-pathological parameters of OSCC patients. PLoS One 6, e27767. https://doi.org/10.1371/journal.pone.0027767
- Ando, S., Tokui, T., Yano, T. and Inagaki, M. (1996) Keratin 8 phosphorylation in vitro by cAMP-dependent protein kinase occurs within the amino- and carboxyl-terminal end domains. Biochem. Biophys. Res. Commun. 221, 67-71. https://doi.org/10.1006/bbrc.1996.0546
- Baribault, H., Blouin, R., Bourgon, L. and Marceau, N. (1989) Epidermal growth factor-induced selective phosphorylation of cultured rat hepatocyte 55-kD cytokeratin before filament reorganization and DNA synthesis. J. Cell Biol. 109, 1665-1676. https://doi.org/10.1083/jcb.109.4.1665
- Beil, M., Micoulet, A., von Wichert, G., Paschke, S., Walther, P., Omary, M. B., Van Veldhoven, P. P., Gern, U., Wolff-Hieber, E., Eggermann, J., Waltenberger, J., Adler, G., Spatz, J. and Seufferlein, T. (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat. Cell Biol. 5, 803-811. https://doi.org/10.1038/ncb1037
- Bhardwaj, A., Singh, S., Srivastava, S. K., Arora, S., Hyde, S. J., Andrews, J., Grizzle, W. E. and Singh, A. P. (2014) Restoration of PPP2CA expression reverses epithelial-to-mesenchymal transition and suppresses prostate tumour growth and metastasis in an orthotopic mouse model. Br. J. Cancer 110, 2000-2010. https://doi.org/10.1038/bjc.2014.141
- Borradori, L. and Sonnenberg, A. (1999) Structure and function of hemidesmosomes: more than simple adhesion complexes. J. Invest. Dermatol. 112, 411-418. https://doi.org/10.1046/j.1523-1747.1999.00546.x
- Burcham, P. C., Raso, A. and Henry, P. J. (2014) Airborne acrolein induces keratin-8 (Ser-73) hyperphosphorylation and intermediate filament ubiquitination in bronchiolar lung cell monolayers. Toxicology 319, 44-52. https://doi.org/10.1016/j.tox.2014.02.010
- Busch, T., Armacki, M., Eiseler, T., Joodi, G., Temme, C., Jansen, J., von Wichert, G., Omary, M. B., Spatz, J. and Seufferlein, T. (2012) Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells. J. Cell Sci. 125, 2148-2159. https://doi.org/10.1242/jcs.080127
- Byun, H. J., Kang, K. J., Park, M. K., Lee, H. J., Kang, J. H., Lee, E. J., Kim, Y. R., Kim, H. J., Kim, Y. W., Jung, K. C., Kim, S. Y. and Lee, C. H. (2013) Ethacrynic acid inhibits sphingosylphosphorylcholineinduced keratin 8 phosphorylation and reorganization via transglutaminase- 2 inhibition. Biomol. Ther. 21, 338-342. https://doi.org/10.4062/biomolther.2013.066
- Cadrin, M., McFarlane-Anderson, N., Aasheim, L. H., Kawahara, H., Franks, D. J., Marceau, N. and French, S. W. (1992) Differential phosphorylation of CK8 and CK18 by 12-O-tetradecanoyl-phorbol-13-acetate in primary cultures of mouse hepatocytes. Cell. Signal. 4, 715-722. https://doi.org/10.1016/0898-6568(92)90052-A
- Chang, T. H., Huang, H. D., Ong, W. K., Fu, Y. J., Lee, O. K., Chien, S. and Ho, J. H. (2014) The effects of actin cytoskeleton perturbation on keratin intermediate filament formation in mesenchymal stem/stromal cells. Biomaterials 35, 3934-3944. https://doi.org/10.1016/j.biomaterials.2014.01.028
- Chen, Y. L., Lin, S. Z., Chang, W. L., Cheng, Y. L. and Harn, H. J. (2005) Requirement for ERK activation in acetone extract identified from Bupleurum scorzonerifolium induced A549 tumor cell apoptosis and keratin 8 phosphorylation. Life Sci. 76, 2409-2420. https://doi.org/10.1016/j.lfs.2004.09.044
- Chou, C. C., Lee, K. H., Lai, I. L., Wang, D., Mo, X., Kulp, S. K., Shapiro, C. L. and Chen, C. S. (2014) AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res. 74, 4783-4795. https://doi.org/10.1158/0008-5472.CAN-14-0135
- Coulombe, P. A. and Omary, M. B. (2002) 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 14, 110-122. https://doi.org/10.1016/S0955-0674(01)00301-5
- Coussens, L. M., Fingleton, B. and Matrisian, L. M. (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387-2392. https://doi.org/10.1126/science.1067100
- Cross, S. E., Jin, Y. S., Rao, J. and Gimzewski, J. K. (2007) Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780-783. https://doi.org/10.1038/nnano.2007.388
- Duan, S., Yao, Z., Zhu, Y., Wang, G., Hou, D., Wen, L. and Wu, M. (2009) The Pirh2-keratin 8/18 interaction modulates the cellular distribution of mitochondria and UV-induced apoptosis. Cell Death Differ. 16, 826-837. https://doi.org/10.1038/cdd.2009.12
- Feng, L., Zhou, X., Liao, J. and Omary, M. B. (1999) Pervanadate-mediated tyrosine phosphorylation of keratins 8 and 19 via a p38 mitogen-activated protein kinase-dependent pathway. J. Cell Sci. 112, 2081-2090.
- Fortier, A. M., Riopel, K., Desaulniers, M. and Cadrin, M. (2010a) Novel insights into changes in biochemical properties of keratins 8 and 18 in griseofulvin-induced toxic liver injury. Exp. Mol. Pathol. 89, 117-125. https://doi.org/10.1016/j.yexmp.2010.07.004
- Fortier, A. M., Van Themsche, C., Asselin, E. and Cadrin, M. (2010b) Akt isoforms regulate intermediate filament protein levels in epithelial carcinoma cells. FEBS Lett. 584, 984-988. https://doi.org/10.1016/j.febslet.2010.01.045
- Friedl, P., Wolf, K. and Lammerding, J. (2011) Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 55-64. https://doi.org/10.1016/j.ceb.2010.10.015
- Fuchs, E. and Raghavan, S. (2002) Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 3, 199-209. https://doi.org/10.1038/nrg758
- Gerlitz, G. and Bustin, M. (2011) The role of chromatin structure in cell migration. Trends Cell Biol. 21, 6-11. https://doi.org/10.1016/j.tcb.2010.09.002
- Getsios, S., Huen, A. C. and Green, K. J. (2004) Working out the strength and flexibility of desmosomes. Nat. Rev. Mol. Cell Biol. 5, 271-281. https://doi.org/10.1038/nrm1356
- Goebeler, M., Roth, J., van den Bos, C., Ader, G. and Sorg, C. (1995) Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments. Biochem. J. 309, 419-424. https://doi.org/10.1042/bj3090419
- Govaere, O., Komuta, M., Berkers, J., Spee, B., Janssen, C., de Luca, F., Katoonizadeh, A., Wouters, J., van Kempen, L. C., Durnez, A., Verslype, C., De Kock, J., Rogiers, V., van Grunsven, L. A., Topal, B., Pirenne, J., Vankelecom, H., Nevens, F., van den Oord, J., Pinzani, M. and Roskams, T. (2014) Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut 63, 674-685. https://doi.org/10.1136/gutjnl-2012-304351
- Green, K. J. and Simpson, C. L. (2007) Desmosomes: new perspectives on a classic. J. Invest. Dermatol. 127, 2499-2515. https://doi.org/10.1038/sj.jid.5701015
- Grin, B., Mahammad, S., Wedig, T., Cleland, M. M., Tsai, L., Herrmann, H. and Goldman, R. D. (2012) Withaferin a alters intermediate filament organization, cell shape and behavior. PLoS One 7, e39065. https://doi.org/10.1371/journal.pone.0039065
- Guo, L., Degenstein, L., Dowling, J., Yu, Q. C., Wollmann, R., Perman, B. and Fuchs, E. (1995) Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81, 233-243. https://doi.org/10.1016/0092-8674(95)90333-X
- Haines, R. L. and Lane, E. B. (2012) Keratins and disease at a glance. J. Cell Sci. 125, 3923-3928. https://doi.org/10.1242/jcs.099655
- Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
- Hatsell, S. and Cowin, P. (2001) Deconstructing desmoplakin. Nat. Cell Biol. 3, E270-272. https://doi.org/10.1038/ncb1201-e270
- Hatzfeld, M. and Weber, K. (1990) The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: use of site-specific mutagenesis and recombinant protein expression. J. Cell Biol. 110, 1199-1210. https://doi.org/10.1083/jcb.110.4.1199
- He, T., Stepulak, A., Holmstrom, T. H., Omary, M. B. and Eriksson, J. E. (2002) The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J. Biol. Chem. 277, 10767-10774. https://doi.org/10.1074/jbc.M111436200
- Herrmann, H. and Aebi, U. (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr. Opin. Cell Biol. 12, 79-90. https://doi.org/10.1016/S0955-0674(99)00060-5
- Hiraga, R., Kato, M., Miyagawa, S. and Kamata, T. (2013) Nox4-derived ROS signaling contributes to TGF-beta-induced epithelial-mesenchymal transition in pancreatic cancer cells. Anticancer Res. 33, 4431-4438.
- Hu, X., Wu, X., Xu, J., Zhou, J., Han, X. and Guo, J. (2009) Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia. BMC Neurosci. 10, 74. https://doi.org/10.1186/1471-2202-10-74
- Kakehashi, A., Inoue, M., Wei, M., Fukushima, S. and Wanibuchi, H. (2009) Cytokeratin 8/18 overexpression and complex formation as an indicator of GST-P positive foci transformation into hepatocellular carcinomas. Toxicol. Appl. Pharmacol. 238, 71-79. https://doi.org/10.1016/j.taap.2009.04.018
- Kalluri, R. and Neilson, E. G. (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776-1784. https://doi.org/10.1172/JCI200320530
- Kalluri, R. and Weinberg, R. A. (2009) The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420-1428. https://doi.org/10.1172/JCI39104
- Kang, J. H., Park, M. K., Kim, H. J., Kim, Y. and Lee, C. H. (2011) Isolation of soil microorganisms having antibacterial activity and antimigratory effects on sphingosylphosphorylcholine-induced migration of PANC-1 cells. Toxicol. Res. 27, 241-246. https://doi.org/10.5487/TR.2011.27.4.241
- Karantza, V. (2011) Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30, 127-138. https://doi.org/10.1038/onc.2010.456
- Kayser, J., Haslbeck, M., Dempfle, L., Krause, M., Grashoff, C., Buchner, J., Herrmann, H. and Bausch, A. R. (2013) The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks. Biophys. J. 105, 1778-1785. https://doi.org/10.1016/j.bpj.2013.09.007
- Khapare, N., Kundu, S. T., Sehgal, L., Sawant, M., Priya, R., Gosavi, P., Gupta, N., Alam, H., Karkhanis, M., Naik, N., Vaidya, M. M. and Dalal, S. N. (2012) Plakophilin3 loss leads to an increase in PRL3 levels promoting K8 dephosphorylation, which is required for transformation and metastasis. PLoS One 7, e38561. https://doi.org/10.1371/journal.pone.0038561
- Kim, E. J., Kim, H. J., Park, M. K., Kang, G. J., Byun, H. J., Lee, H. and Lee, C. H. (2015) Cardamonin suppresses TGF-beta1-induced epithelial mesenchymal transition via restoring protein phosphatase 2A expression. Biomol. Ther. 23, 141-148. https://doi.org/10.4062/biomolther.2014.117
- Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J. and Stoter, M. (2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell. Signal. 17, 675-689. https://doi.org/10.1016/j.cellsig.2004.12.011
- Kolsch, A., Windoffer, R. and Leube, R. E. (2009) Actin-dependent dynamics of keratin filament precursors. Cell Motil. Cytoskeleton 66, 976-985. https://doi.org/10.1002/cm.20395
- Komine, M., Freedberg, I. M. and Blumenberg, M. (1996) Regulation of epidermal expression of keratin K17 in inflammatory skin diseases. J. Invest. Dermatol. 107, 569-575. https://doi.org/10.1111/1523-1747.ep12582820
- Koster, J., Geerts, D., Favre, B., Borradori, L. and Sonnenberg, A. (2003) Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly. J. Cell Sci. 116, 387-399. https://doi.org/10.1242/jcs.00241
- Kouklis, P. D., Hutton, E. and Fuchs, E. (1994) Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J. Cell Biol. 127, 1049-1060. https://doi.org/10.1083/jcb.127.4.1049
- Koyanagi, N., Imai, T., Arii, J., Kato, A. and Kawaguchi, Y. (2014) Role of herpes simplex virus 1 Us3 in viral neuroinvasiveness. Microbiol. Immunol. 58, 31-37. https://doi.org/10.1111/1348-0421.12108
- Ku, N. O., Azhar, S. and Omary, M. B. (2002a) Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. J. Biol. Chem. 277, 10775-10782. https://doi.org/10.1074/jbc.M107623200
- Ku, N. O., Liao, J. and Omary, M. B. (1998) Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J. 17, 1892-1906. https://doi.org/10.1093/emboj/17.7.1892
- Ku, N. O., Michie, S., Resurreccion, E. Z., Broome, R. L. and Omary, M. B. (2002b) Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc. Natl. Acad. Sci. U.S.A. 99, 4373-4378. https://doi.org/10.1073/pnas.072624299
- Ku, N. O. and Omary, M. B. (1997) Phosphorylation of human keratin 8 in vivo at conserved head domain serine 23 and at epidermal growth factor-stimulated tail domain serine 431. J. Biol. Chem. 272, 7556-7564. https://doi.org/10.1074/jbc.272.11.7556
- Ku, N. O., Toivola, D. M., Strnad, P. and Omary, M. B. (2010) Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat Cell Biol. 12, 876-885. https://doi.org/10.1038/ncb2091
- Ku, N. O., Zhou, X., Toivola, D. M. and Omary, M. B. (1999) The cytoskeleton of digestive epithelia in health and disease. Am. J. Physiol. 277, G1108-1137.
- Kuga, T., Kume, H., Kawasaki, N., Sato, M., Adachi, J., Shiromizu, T., Hoshino, I., Nishimori, T., Matsubara, H. and Tomonaga, T. (2013) A novel mechanism of keratin cytoskeleton organization through casein kinase Ialpha and FAM83H in colorectal cancer. J. Cell Sci. 126, 4721-4731. https://doi.org/10.1242/jcs.129684
- Lee, E. J., Park, M. K., Kim, H. J., Kang, J. H., Kim, Y. R., Kang, G. J., Byun, H. J. and Lee, C. H. (2014) 12-O-tetradecanoylphorbol-13-acetate induces keratin 8 phosphorylation and reorganization via expression of transglutaminase-2. Biomol. Ther. 22, 122-128. https://doi.org/10.4062/biomolther.2014.007
- Lee, J. C., Schickling, O., Stegh, A. H., Oshima, R. G., Dinsdale, D., Cohen, G. M. and Peter, M. E. (2002) DEDD regulates degradation of intermediate filaments during apoptosis. J. Cell Biol. 158, 1051-1066. https://doi.org/10.1083/jcb.200112124
- Leube, R. E., Moch, M., Kolsch, A. and Windoffer, R. (2011) "Panta rhei": Perpetual cycling of the keratin cytoskeleton. Bioarchitecture 1, 39-44. https://doi.org/10.4161/bioa.1.1.14815
- Liao, J., Lowthert, L. A. and Omary, M. B. (1995) Heat stress or rotavirus infection of human epithelial cells generates a distinct hyperphosphorylated form of keratin 8. Exp. Cell Res. 219, 348-357. https://doi.org/10.1006/excr.1995.1238
- Liao, J. and Omary, M. B. (1996) 14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J. Cell Biol. 132, 345-357. https://doi.org/10.1083/jcb.132.3.345
- Liovic, M., Mogensen, M. M., Prescott, A. R. and Lane, E. B. (2003) Observation of keratin particles showing fast bidirectional movement colocalized with microtubules. J. Cell Sci. 116, 1417-1427. https://doi.org/10.1242/jcs.00363
- Loschke, F., Seltmann, K., Bouameur, J. E. and Magin, T. M. (2015) Regulation of keratin network organization. Curr. Opin. Cell Biol. 32C, 56-64.
- Lv, Q., Hua, F. and Hu, Z. W. (2012) DEDD, a novel tumor repressor, reverses epithelial-mesenchymal transition by activating selective autophagy. Autophagy 8, 1675-1676. https://doi.org/10.4161/auto.21438
- Ma, Q., Guin, S., Padhye, S. S., Zhou, Y. Q., Zhang, R. W. and Wang, M. H. (2011) Ribosomal protein S6 kinase (RSK)-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein. Mol. Cancer 10, 66. https://doi.org/10.1186/1476-4598-10-66
- Mellad, J. A., Warren, D. T. and Shanahan, C. M. (2011) Nesprins LINC the nucleus and cytoskeleton. Curr. Opin. Cell Biol. 23, 47-54. https://doi.org/10.1016/j.ceb.2010.11.006
- Menon, M. B., Schwermann, J., Singh, A. K., Franz-Wachtel, M., Pabst, O., Seidler, U., Omary, M. B., Kotlyarov, A. and Gaestel, M. (2010) p38 MAP kinase and MAPKAP kinases MK2/3 cooperatively phosphorylate epithelial keratins. J. Biol. Chem. 285, 33242-33251. https://doi.org/10.1074/jbc.M110.132357
- Mizuuchi, E., Semba, S., Kodama, Y. and Yokozaki, H. (2009) Downmodulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression. Int. J. Cancer 124, 1802-1810. https://doi.org/10.1002/ijc.24111
- Moll, R., Franke, W. W., Schiller, D. L., Geiger, B. and Krepler, R. (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11-24. https://doi.org/10.1016/0092-8674(82)90400-7
- Murata, T., Goshima, F., Nishizawa, Y., Daikoku, T., Takakuwa, H., Ohtsuka, K., Yoshikawa, T. and Nishiyama, Y. (2002) Phosphorylation of cytokeratin 17 by herpes simplex virus type 2 US3 protein kinase. Microbiol. Immunol. 46, 707-719. https://doi.org/10.1111/j.1348-0421.2002.tb02755.x
- Neumann, S. and Noegel, A. A. (2014) Nesprins in cell stability and migration. Adv. Exp. Med. Biol. 773, 491-504. https://doi.org/10.1007/978-1-4899-8032-8_22
- Omary, M. B., Ku, N. O., Liao, J. and Price, D. (1998) Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell. Biochem. 31, 105-140.
- Omary, M. B., Ku, N. O., Strnad, P. and Hanada, S. (2009) Toward unraveling the complexity of simple epithelial keratins in human disease. J. Clin. Invest. 119, 1794-1805. https://doi.org/10.1172/JCI37762
- Omary, M. B., Ku, N. O., Tao, G. Z., Toivola, D. M. and Liao, J. (2006) "Heads and tails" of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem. Sci. 31, 383-394. https://doi.org/10.1016/j.tibs.2006.05.008
- Omary, M. B., Ku, N. O. and Toivola, D. M. (2002) Keratins: guardians of the liver. Hepatology 35, 251-257. https://doi.org/10.1053/jhep.2002.31165
- Oshima, R. G. (1982) Developmental expression of murine extraembryonic endodermal cytoskeletal proteins. J. Biol. Chem. 257, 3414-3421.
- Padmakumar, V. C., Libotte, T., Lu, W., Zaim, H., Abraham, S., Noegel, A. A., Gotzmann, J., Foisner, R. and Karakesisoglou, I. (2005) The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J. Cell Sci. 118, 3419-3430. https://doi.org/10.1242/jcs.02471
- Pan, X., Hobbs, R. P. and Coulombe, P. A. (2013) The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr. Opin. Cell Biol. 25, 47-56. https://doi.org/10.1016/j.ceb.2012.10.018
- Pan, X., Kane, L. A., Van Eyk, J. E. and Coulombe, P. A. (2011) Type I keratin 17 protein is phosphorylated on serine 44 by p90 ribosomal protein S6 kinase 1 (RSK1) in a growth- and stress-dependent fashion. J. Biol. Chem. 286, 42403-42413. https://doi.org/10.1074/jbc.M111.302042
- Paramio, J. M., Segrelles, C., Ruiz, S. and Jorcano, J. L. (2001) Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Mol. Cell. Biol. 21, 7449-7459. https://doi.org/10.1128/MCB.21.21.7449-7459.2001
- Park, M. K., Lee, H. J., Shin, J., Noh, M., Kim, S. Y. and Lee, C. H. (2011) Novel participation of transglutaminase-2 through c-Jun Nterminal kinase activation in sphingosylphosphorylcholine-induced keratin reorganization of PANC-1 cells. Biochim. Biophys. Acta 1811, 1021-1029. https://doi.org/10.1016/j.bbalip.2011.07.007
- Park, M. K., Park, Y., Shim, J., Lee, H. J., Kim, S. and Lee, C. H. (2012) Novel involvement of leukotriene B(4) receptor 2 through ERK activation by PP2A down-regulation in leukotriene B(4)-induced keratin phosphorylation and reorganization of pancreatic cancer cells. Biochim. Biophys. Acta 1823, 2120-2129. https://doi.org/10.1016/j.bbamcr.2012.09.004
- Park, M. K., You, H. J., Lee, H. J., Kang, J. H., Oh, S. H., Kim, S. Y. and Lee, C. H. (2013) Transglutaminase-2 induces N-cadherin expression in TGF-beta1-induced epithelial mesenchymal transition via c-Jun-N-terminal kinase activation by protein phosphatase 2A down-regulation. Eur. J. Cancer 49, 1692-1705. https://doi.org/10.1016/j.ejca.2012.11.036
- Pavlaki, M. and Zucker, S. (2003) Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev. 22, 177-203. https://doi.org/10.1023/A:1023047431869
- Perng, M. D., Cairns, L., van den, I. P., Prescott, A., Hutcheson, A. M. and Quinlan, R. A. (1999) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J. Cell Sci. 112 (Pt 13), 2099-2112.
- Rajgor, D., Mellad, J. A., Soong, D., Rattner, J. B., Fritzler, M. J. and Shanahan, C. M. (2014) Mammalian microtubule P-body dynamics are mediated by nesprin-1. J. Cell Biol. 205, 457-475. https://doi.org/10.1083/jcb.201306076
- Ridge, K. M., Linz, L., Flitney, F. W., Kuczmarski, E. R., Chou, Y. H., Omary, M. B., Sznajder, J. I. and Goldman, R. D. (2005) Keratin 8 phosphorylation by protein kinase C delta regulates shear stressmediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J. Biol. Chem. 280, 30400-30405. https://doi.org/10.1074/jbc.M504239200
- Rotty, J. D. and Coulombe, P. A. (2012) A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair. J. Cell Biol. 197, 381-389. https://doi.org/10.1083/jcb.201107078
- Schmidt, A. and Jager, S. (2005) Plakophilins--hard work in the desmosome, recreation in the nucleus? Eur. J. Cell Biol. 84, 189-204. https://doi.org/10.1016/j.ejcb.2004.12.020
- Scott, G. K., Atsriku, C., Kaminker, P., Held, J., Gibson, B., Baldwin, M. A. and Benz, C. C. (2005) Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation. Mol. Pharmacol. 68, 606-615.
- Seltmann, K., Roth, W., Kroger, C., Loschke, F., Lederer, M., Huttelmaier, S. and Magin, T. M. (2013) Keratins mediate localization of hemidesmosomes and repress cell motility. J. Invest. Dermatol. 133, 181-190. https://doi.org/10.1038/jid.2012.256
- Sivaramakrishnan, S., Schneider, J. L., Sitikov, A., Goldman, R. D. and Ridge, K. M. (2009) Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C zeta. Mol. Biol. Cell 20, 2755-2765. https://doi.org/10.1091/mbc.E08-10-1028
- Snider, N. T. and Omary, M. B. (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 15, 163-177. https://doi.org/10.1038/nrm3753
- Snider, N. T., Park, H. and Omary, M. B. (2013) A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 protein insolubility and filament organization. J. Biol. Chem. 288, 31329-31337. https://doi.org/10.1074/jbc.M113.502724
- Snider, N. T., Weerasinghe, S. V., Iniguez-Lluhi, J. A., Herrmann, H. and Omary, M. B. (2011) Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation. J. Biol. Chem. 286, 2273-2284. https://doi.org/10.1074/jbc.M110.171314
- Sonnenberg, A. and Liem, R. K. (2007) Plakins in development and disease. Exp. Cell Res. 313, 2189-2203. https://doi.org/10.1016/j.yexcr.2007.03.039
- Srikanth, B., Vaidya, M. M. and Kalraiya, R. D. (2010) O-GlcNAcylation determines the solubility, filament organization, and stability of keratins 8 and 18. J. Biol. Chem. 285, 34062-34071. https://doi.org/10.1074/jbc.M109.098996
- Steinert, P. M. (1988) The dynamic phosphorylation of the human intermediate filament keratin 1 chain. J. Biol. Chem. 263, 13333-13339.
- Stroka, K. M. and Konstantopoulos, K. (2014) Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am. J. Physiol. Cell Physiol. 306, C98-C109. https://doi.org/10.1152/ajpcell.00289.2013
- Sugimoto, M., Inoko, A., Shiromizu, T., Nakayama, M., Zou, P., Yonemura, S., Hayashi, Y., Izawa, I., Sasoh, M., Uji, Y., Kaibuchi, K., Kiyono, T. and Inagaki, M. (2008). The keratin-binding protein Albatross regulates polarization of epithelial cells. J. Cell Biol. 183, 19-28. https://doi.org/10.1083/jcb.200803133
- Sun, Z., Guo, Y. S., Yan, S. J., Wan, Z. Y., Gao, B., Wang, L., Liu, Z. H., Gao, Y., Samartzis, D., Lan, L. F., Wang, H. Q. and Luo, Z. J. (2013) CK8 phosphorylation induced by compressive loads underlies the downregulation of CK8 in human disc degeneration by activating protein kinase C. Lab. Invest. 93, 1323-1330. https://doi.org/10.1038/labinvest.2013.122
- Suozzi, K. C., Wu, X. and Fuchs, E. (2012) Spectraplakins: master orchestrators of cytoskeletal dynamics. J. Cell Biol. 197, 465-475. https://doi.org/10.1083/jcb.201112034
- Suresh, S. (2007) Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413-438. https://doi.org/10.1016/j.actbio.2007.04.002
- Tao, G. Z., Toivola, D. M., Zhou, Q., Strnad, P., Xu, B., Michie, S. A. and Omary, M. B. (2006) Protein phosphatase-2A associates with and dephosphorylates keratin 8 after hyposmotic stress in a siteand cell-specific manner. J. Cell Sci. 119, 1425-1432. https://doi.org/10.1242/jcs.02861
- Toivola, D. M., Boor, P., Alam, C. and Strnad, P. (2015) Keratins in health and disease. Curr. Opin. Cell Biol. 32C, 73-81.
- Toivola, D. M., Goldman, R. D., Garrod, D. R. and Eriksson, J. E. (1997) Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. J. Cell Sci. 110, 23-33.
- Toivola, D. M., Zhou, Q., English, L. S. and Omary, M. B. (2002) Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells. Mol. Biol. Cell 13, 1857-1870. https://doi.org/10.1091/mbc.01-12-0591
- Velasco, G., Gomez del Pulgar, T., Carling, D. and Guzman, M. (1998) Evidence that the AMP-activated protein kinase stimulates rat liver carnitine palmitoyltransferase I by phosphorylating cytoskeletal components. FEBS Lett. 439, 317-320. https://doi.org/10.1016/S0014-5793(98)01400-8
- Wang, H., Quah, S. Y., Dong, J. M., Manser, E., Tang, J. P. and Zeng, Q. (2007a) PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res. 67, 2922-2926. https://doi.org/10.1158/0008-5472.CAN-06-3598
- Wang, L., Srinivasan, S., Theiss, A. L., Merlin, D. and Sitaraman, S. V. (2007b) Interleukin-6 induces keratin expression in intestinal epithelial cells: potential role of keratin-8 in interleukin-6-induced barrier function alterations. J. Biol. Chem. 282, 8219-8227. https://doi.org/10.1074/jbc.M604068200
- Wang, Q., Griffin, H., Southern, S., Jackson, D., Martin, A., McIntosh, P., Davy, C., Masterson, P. J., Walker, P. A., Laskey, P., Omary, M. B. and Doorbar, J. (2004) Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J. Virol. 78, 821-833. https://doi.org/10.1128/JVI.78.2.821-833.2004
- Windoffer, R., Beil, M., Magin, T. M. and Leube, R. E. (2011) Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J. Cell Biol. 194, 669-678. https://doi.org/10.1083/jcb.201008095
- Woll, S., Windoffer, R. and Leube, R. E. (2005) Dissection of keratin dynamics: different contributions of the actin and microtubule systems. Eur. J. Cell Biol. 84, 311-328. https://doi.org/10.1016/j.ejcb.2004.12.004
- Woll, S., Windoffer, R. and Leube, R. E. (2007) p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells. J. Cell Biol. 177, 795-807. https://doi.org/10.1083/jcb.200703174
- Yano, T., Tokui, T., Nishi, Y., Nishizawa, K., Shibata, M., Kikuchi, K., Tsuiki, S., Yamauchi, T. and Inagaki, M. (1991) Phosphorylation of keratin intermediate filaments by protein kinase C, by calmodulin-dependent protein kinase and by cAMP-dependent protein kinase. Eur. J. Biochem. 197, 281-290. https://doi.org/10.1111/j.1432-1033.1991.tb15909.x
- Zhao, L., Geng, H., Liang, Z. F., Zhang, Z. Q., Zhang, T., Yu, X. and Zhong, C. Y. (2015) Benzidine induces epithelial-mesenchymal transition in human uroepithelial cells through ERK1/2 pathway. Biochem. Biophys. Res. Commun. 459, 643-649. https://doi.org/10.1016/j.bbrc.2015.02.163
- Zhou, Q., Cadrin, M., Herrmann, H., Chen, C. H., Chalkley, R. J., Burlingame, A. L. and Omary, M. B. (2006) Keratin 20 serine 13 phosphorylation is a stress and intestinal goblet cell marker. J. Biol. Chem. 281, 16453-16461. https://doi.org/10.1074/jbc.M512284200
- Zhou, Q., Snider, N. T., Liao, J., Li, D. H., Hong, A., Ku, N. O., Cartwright, C. A. and Omary, M. B. (2010) Characterization of in vivo keratin 19 phosphorylation on tyrosine-391. PLoS One 5, e13538. https://doi.org/10.1371/journal.pone.0013538
- Zhou, X., Liao, J., Hu, L., Feng, L. and Omary, M. B. (1999) Characterization of the major physiologic phosphorylation site of human keratin 19 and its role in filament organization. J. Biol. Chem. 274, 12861-12866. https://doi.org/10.1074/jbc.274.18.12861
피인용 문헌
- The effect and mechanism of bufalin on regulating hepatocellular carcinoma cell invasion and metastasis via Wnt/β-catenin signaling pathway vol.48, pp.1, 2016, https://doi.org/10.3892/ijo.2015.3250
- Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells vol.1863, pp.6, 2016, https://doi.org/10.1016/j.bbamcr.2016.02.007
- Novel effects of FTY720 on perinuclear reorganization of keratin network induced by sphingosylphosphorylcholine: Involvement of protein phosphatase 2A and G-protein-coupled receptor-12 vol.775, 2016, https://doi.org/10.1016/j.ejphar.2016.02.024
- Effects of cerulein on keratin 8 phosphorylation and perinuclear reorganization in pancreatic cancer cells: Involvement of downregulation of protein phosphatase 2A and alpha4 vol.31, pp.12, 2016, https://doi.org/10.1002/tox.22186
- Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation vol.1862, pp.9, 2016, https://doi.org/10.1016/j.bbadis.2016.05.010
- Proteomics Analysis Reveals Involvement of Krt17 in Areca Nut-Induced Oral Carcinogenesis vol.15, pp.9, 2016, https://doi.org/10.1021/acs.jproteome.6b00138
- Quantitative phosphoproteomic analysis reveals system-wide signaling pathways regulated by site-specific phosphorylation of Keratin-8 in skin squamous cell carcinoma derived cell line vol.17, pp.7, 2017, https://doi.org/10.1002/pmic.201600254
- Plasticity of tumor cell invasion: governance by growth factors and cytokines 2016, https://doi.org/10.1093/carcin/bgw098
- Leukotriene B4 induces EMT and vimentin expression in PANC-1 pancreatic cancer cells: Involvement of BLT2 via ERK2 activation vol.115, 2016, https://doi.org/10.1016/j.plefa.2016.10.009
- Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2 vol.25, pp.6, 2017, https://doi.org/10.4062/biomolther.2016.228
- Insulin receptor plays a central role in skin carcinogenesis by regulating cytoskeleton assembly vol.33, pp.2, 2019, https://doi.org/10.1096/fj.201800847R
- YDJC Induces Epithelial-Mesenchymal Transition via Escaping from Interaction with CDC16 through Ubiquitination of PP2A vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/3542537
- Multifaceted role of keratins in epithelial cell differentiation and transformation vol.44, pp.2, 2019, https://doi.org/10.1007/s12038-019-9864-8
- Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment vol.11, pp.11, 2015, https://doi.org/10.3390/cancers11111696
- The Functions and Applications of Epithelial Keratins in Normal Tissues and Tumors vol.9, pp.3, 2015, https://doi.org/10.12677/pi.2020.93017
- Acute effects of cell stretch on keratin filaments in A549 lung cells vol.34, pp.8, 2015, https://doi.org/10.1096/fj.201903160rr
- Generation of a tissue‐specific transgenic model for K8 phosphomutants: A tool to investigate the role of K8 phosphorylation during skin carcinogenesis in vivo vol.45, pp.8, 2015, https://doi.org/10.1002/cbin.11611
- Porcine pancreatic ductal epithelial cells transformed with KRASG12D and SV40T are tumorigenic vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-92852-2