DOI QR코드

DOI QR Code

방전플라즈마 소결법으로 제조된 탄소나노튜브 강화 SKD11 금형강의 분말소결 특성

Powder Sintering Characteristics of Carbon Nanotubes Reinforced SKD11 Tool Steel Sintered by Spark Plasma Sintering

  • 문제세 ((주)어플라이드카본나노 기술연구소) ;
  • 정성실 ((주)어플라이드카본나노 기술연구소) ;
  • 이대열 ((주)어플라이드카본나노 기술연구소) ;
  • 정영근 (부산대학교 융합학부 하이브리드소재응용전공) ;
  • 강명창 (부산대학교 융합학부 하이브리드소재응용전공) ;
  • 박춘달 ((재)대구기계부품연구원 차세대금형기술혁신센터) ;
  • 윤국태 ((재)대구기계부품연구원 차세대금형기술혁신센터)
  • Moon, Je-Se (Research Lab., Applied Carbon Nanotechnology, CO., LTD.) ;
  • Jung, Sung-Sil (Research Lab., Applied Carbon Nanotechnology, CO., LTD.) ;
  • Lee, Dae-Yeol (Research Lab., Applied Carbon Nanotechnology, CO., LTD.) ;
  • Jeong, Young-Keun (Graduate School of Convergence Science, Pusan National University) ;
  • Kang, Myung Chang (Graduate School of Convergence Science, Pusan National University) ;
  • Park, Chun-Dal (Next Generation Mold Technology Innovation Center, Daegu Mechatronics and Materials Institute 12) ;
  • Youn, Kook-Tae (Next Generation Mold Technology Innovation Center, Daegu Mechatronics and Materials Institute 12)
  • 투고 : 2015.06.05
  • 심사 : 2015.06.20
  • 발행 : 2015.06.28

초록

SKD11(ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. Adding of CNTs increased the performance of mechanical properties more. 1, 3 vol.% CNTs was dispersed in SKD11 matrix by mechanical alloying. SKD11 carbon nanocomposite powder was sintered by spark plasma sintering process. FE-SEM, HR-TEM and Raman analysis were carried out SKD11 carbon nanocomposites.

키워드

참고문헌

  1. http://www.dt.co.kr/contents.html?article_no=2015012902101832808001.
  2. Kyung-In Association of Science and Technology Information, Automotive Mold Industry, 2010.10. (Korean).
  3. S. S. Jung, D. Y. Lee, J. S. Moon, K. T. Youn, C. D. Park and J. S. Song: J. Korean Powder Metall. Inst., 20 (2013) 291 (Korean). https://doi.org/10.4150/KPMI.2013.20.4.291
  4. S. Iijima: Nature, 354 (1991) 56. https://doi.org/10.1038/354056a0
  5. M. M. J. Treacy, T. W. Ebbesen and Gibson, J. M.: 381 (1996) 678. https://doi.org/10.1038/381678a0
  6. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M. M. J. Treacy: Phys. Rev., B. 58 (1998) 14013. https://doi.org/10.1103/PhysRevB.58.14013
  7. E. W. Wong, P. E. Sheehan and Lieber, C. M.: Science, 277 (1997) 1971. https://doi.org/10.1126/science.277.5334.1971
  8. O. Lourie and H. D. Wagner: J. Mater. Res., 13 (1998) 2418. https://doi.org/10.1557/JMR.1998.0336
  9. P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer: Science, 283 (1999) 1513. https://doi.org/10.1126/science.283.5407.1513
  10. D. M. Hulbert, A. Anders, E. J. Lavernia and A. K. Mukherjee: Scripta Mater., 60 (2009) 835. https://doi.org/10.1016/j.scriptamat.2008.12.059
  11. Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 41 (2006) 763. https://doi.org/10.1007/s10853-006-6555-2
  12. J. K. Lee, T. S. Kim and J. G. Kim: J. Korean Powder Metall. Inst., 14 (2007) 197 (Korean). https://doi.org/10.4150/KPMI.2007.14.3.197
  13. S. S. Jung, D. Y. Lee, W. S. Chung and I. M. Park: Carbon Science 5 (2004) 133.
  14. H. S. Jeong: Physics and High Technology, 18, 7/8, 20, 2009 (Korean),