DOI QR코드

DOI QR Code

Application of Hydro-Cartographic Generalization on Buildings for 2-Dimensional Inundation Analysis

2차원 침수해석을 위한 수리학적 건물 일반화 기법의 적용

  • PARK, In-Hyeok (Department of Urban Engineering, Chungbuk National University) ;
  • JIN, Gi-Ho (Department of Urban Engineering, Chungbuk National University) ;
  • JEON, Ka-Young (Department of Urban Engineering, Chungbuk National University) ;
  • HA, Sung-Ryong (Department of Urban Engineering, Chungbuk National University)
  • Received : 2015.01.24
  • Accepted : 2015.06.09
  • Published : 2015.06.30

Abstract

Urban flooding threatens human beings and facilities with chemical and physical hazards since the beginning of human civilization. Recent studies have emphasized the integration of data and models for effective urban flood inundation modeling. However, the model set-up process is tend to be time consuming and to require a high level of data processing skill. Furthermore, in spite of the use of high resolution grid data, inundation depth and velocity are varied with building treatment methods in 2-D inundation model, because undesirable grids are generated and resulted in the reliability decline of the simulation results. Thus, it requires building generalization process or enhancing building orthogonality to minimize the distortion of building before converting building footprint into grid data. This study aims to develop building generalization method for 2-dimensional inundation analysis to enhance the model reliability, and to investigate the effect of building generalization method on urban inundation in terms of geographical engineering and hydraulic engineering. As a result to improve the reliability of 2-dimensional inundation analysis, the building generalization method developed in this study should be adapted using Digital Building Model(DBM) before model implementation in urban area. The proposed building generalization sequence was aggregation-simplification, and the threshold of the each method should be determined by considering spatial characteristics, which should not exceed the summation of building gap average and standard deviation.

인류의 문명의 시작된 이래 도시유역의 침수는 거주민과 해당지역의 시설에 화학적이고 물리적인 피해를 입혀왔다. 최근의 연구는 도시홍수와 침수를 해석을 위한 모델과 지형자료의 통합에 관한 연구가 주를 이뤄왔다. 그러나 2차원 모델의 구축과정에 많은 시간이 소요되고 높은 데이터 처리기술을 요구하는 경향이 있다. 게다가 건물의 격자화 과정에서 의도치 않는 격자가 발생하게 되어 해석결과의 신뢰도를 떨어뜨리기 때문에 고해상도의 데이터 구득과 모형을 구축하더라도 건물의 처리기법에 따라 해석결과가 달라진다. 따라서 2차원 침수해석모형의 건물의 자료를 입력 시에는 이러한 왜곡현상을 최소화 할 수 있도록 건물의 일반화 처리 혹은 건물의 직교성 확보 등의 전처리가 필요하다. 이에 본 연구의 목적은 2차원 침수해석결과의 신뢰도를 향상시킬 수 있는 건물의 일반화 기법을 개발하고 건물의 일반화에 따른 영향을 검토하는데 있다. 연구결과, 도시지역의 2차원 침수해석결과의 신뢰도를 향상시키기 위해서는 각종 수치지도로부터 DBM(Digital Building Model)을 생성하고 본 연구에서 제안한 방법 Aggregation-Simplification을 적용하여 건물의 일반화를 수행하는 것이 바람직하며 각 기법의 임계값은 대상지역의 건물의 공간적인 특성을 고려하여 설정하되 건물의 평균 간격과 건물 간격의 표준편차를 더한 값을 초과하지 않는 것이 바람직한 것으로 나타났다.

Keywords

References

  1. Bales, J.D. and C.R. Wagner. 2009. Sources of uncertainty in flood inundation maps. Journal of Flood Risk Management 2:139-147. https://doi.org/10.1111/j.1753-318X.2009.01029.x
  2. Beven, K. 2002. Towards a coherent philosophy for modeling the environment. Proceeding of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 458(2026): 2465-2484. https://doi.org/10.1098/rspa.2002.0986
  3. Djordjevic, S., D. Prodanovic and C. Makximovic. 1999. An approach to simulation of dual drainage. Water Science and Technology 39(5):95-103. https://doi.org/10.1016/S0273-1223(99)00221-8
  4. Droppova, V. 2011. The tools of automated generalization and building generalization in an ArcGIS environment. Slovak Journal of Civil Engineering XIX(1):1-7. https://doi.org/10.2478/v10189-011-0001-4
  5. ESRI. 1996. Automation of Map Generalization. ESRI White Paper Series.
  6. Fewtrell, T.J., P.D. Bates and N.M. Hunter. 2008, Evaluating the effect of scale in flood inundation modelling in urban environments. Hydrological Processes 22:5107-5118. https://doi.org/10.1002/hyp.7148
  7. Ha, C.Y., K.Y. Han and W.H. Cho. 2010. 2-D inundation analysis according to post-spacing density of DEMs from LiDAR using GIS. Journal of the Korean Association of Geographic Information Studies 13(1):74-88 (하창용, 한건연, 조완희. 2010. GIS를 활용한 LiDAR 자료의 밀도에 따른 2차원 침수해석. 한국지리정보학회지 13(1):74-88).
  8. Horritt, M.S. and P.D. Bates. 2011. Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology 253:239-249.
  9. Jin, G.H. 2015. Development of building generalization method for twodimensional urban inundation modelling. Ph.D. Thesis of Chungbuk National University (진기호. 2015. 2차원 도시침수 해석을 위한 건물 일반화 기법 개발. 충북대학교 대학원 박사학위논문).
  10. Lee, C.H., K.Y. Han and J.S. Kim. 2006. Urban inundation analysis by applying with GIS. Journal of the Korean Association of Geographic Information Studies 9(2):115-125 (이창희, 한건연, 김지성. 2006. GIS를 이용한 도시지역 침수 해석. 한국지리정보학회지 9(2):115-125).
  11. Lee, J.Y., G.H. Jin and S.R. Ha. 2014. Analysis of urban inundation considering building footprints based on dualdrainage scheme. Journal of the Korean Association of Geographic Information Studies 17(4):40-51 (이정영, 진기호, 하성룡. 2014. 건물의 영향을 고려한 이중배수 체계기반 침수해석. 한국지리정보학회지 17 (4):40-51). https://doi.org/10.11108/kagis.2014.17.4.040
  12. Li, Z., H. Yan, T. Ai and J. Chen. 2004. Automated building generalization based on urban morphology and gestalt theory. International Journal Geographical Information Science 18(5):513-534. https://doi.org/10.1080/13658810410001702021
  13. Mark, O., S. Seesakul, C. Apirumanekul, S.B. Aroonet and S. Djordjevic. 2004. Potential and limitation of 1D modeling of urban flooding. Journal of Hydrology 299(3-4):284-299. https://doi.org/10.1016/S0022-1694(04)00373-7
  14. Mingnot, E., A. Paquier and S. Haider. 2006. Modeling floods in a dense urban area using 2D shallow water equation. Journal of Hydrology 327(1-2):186-199. https://doi.org/10.1016/j.jhydrol.2005.11.026
  15. Neelz, S., G. Pender, I. Villanueva, M. Wilson, N.G. Wright, P. Bates, D. Mason and C. Whitlow. 2006. Using remotely sensed data to support flood modelling. Water Management 159.
  16. Park, I.H., J.Y. Lee, J.H. Lee and S.R. Ha. 2014. Evaluation of the cause of inundation in a repeatedly flooded zone in the city of Cheongju, Korea using a 1D/2D model. Water Science & Technology 69(11):2175-2183. https://doi.org/10.2166/wst.2014.077
  17. Park, I.H. and S.R. Ha. 2013. An analysis on inundation characteristics of urban watershed according to variation in return period of design rainfall. Journal of Wetlands Research 15(4):585-593 (박인혁, 하성룡. 2013. 설계 강우량의 재현 빈도 변화에 따른 도시유역의 침수특성 분석. 한국습지학회지 15(4):585-593). https://doi.org/10.17663/JWR.2013.15.4.585
  18. Sanders, B.F. 2007. Evaluation of on-line DEMs for flood inundation modeling. Advanced in Water Resources 30:1831-1843. https://doi.org/10.1016/j.advwatres.2007.02.005
  19. Schubert, J.E. and B.F. Sanders. 2012. Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency. Advances in Water Resources 41:49-64. https://doi.org/10.1016/j.advwatres.2012.02.012
  20. Schubert, J.E., B.F. Sanders, M.J. Smith and N.G. Wright. 2008. Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding. Advances in Water Resources 31:1603-1621. https://doi.org/10.1016/j.advwatres.2008.07.012
  21. Seoul Metropolitan Government. 2012. The master plan of disaster reduction measures installation such as Sinwol underground water discharge tunnel in downtown (서울특별시. 2012. 신월 빗물 저류배수시설 등 방재시설 확충 기본계획보고서).
  22. Tsubaki, R. and L. Fujuta. 2010. Unstructured grid generation using LiDAR data for urban flood modeling. Hydrological Processes 24(11):1404-1420. https://doi.org/10.1002/hyp.7608
  23. Tsubaki, R. and Y. Kawahara. 2013. The uncertainty of local flow parameters during inundation flow over complex topographies with elevation errors. Journal of Hydrology 486:71-87. https://doi.org/10.1016/j.jhydrol.2013.01.042